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Multiple Pure Strategy Nash Equilibria 

Example: Battle of the Sexes Game. 

Player 1 \ Player 2 
ballet 

football 

ballet football 
(1,4) (0, 0) 
(0, 0) (4,1) 

I This game has two pure Nash equilibria. 

Example: Partnership Game. 

Player 1 \ Player 2 
work hard 

shirk 

I Also two pure Nash equilibria. 

work hard shirk 
(2,2) (−1, 1) 
(1, −1) (0,0) 
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Pareto Optimality and Social Optimality 

Pareto optimality: A choice of strategies, one by each player, is 
Pareto-optimal if there is no other choice of strategies in which all players 
receive payoffs at least as high, and at least one player receives a strictly 
higher payoff. 

Examples: 
I Battle of the Sexes Game: both Nash equilibria pareto-optimal. 
I Partnership Game: (work hard, work hard) pareto-optimal, 

(shirk,shirk) not pareto-optimal. 
I Prisoner’s Dilemma: Nash equilibrium not pareto-optimal. All other 

pair of strategies pareto-optimal. 

prisoner 1 / prisoner 2 Betray Stay silent 
Betray (−4, −4) (−1, −5) 

Stay silent (−5, −1) (−2, −2) 
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Pareto Optimality and Social Optimality 

Social optimality: A choice of strategies, one by each player, is a social 
welfare maximizer (or socially optimal) if it maximizes the sum of the 
players’ payoffs. 

I Stronger than pareto optimality: 
social optimality ⇒ pareto optimality. why? 

Examples: 
I Battle of the Sexes Game: both Nash equilibria socially-optimal. 
I Partnership Game: (work hard, work hard) socially-optimal, 

(shirk,shirk) not socially-optimal. 
I Prisoner’s Dilemma: Nash equilibrium not socially-optimal. (Silent, 

Silent) socially-optimal. 

Self-interested, rational behavior may or may not lead to socially optimal 
result. 

Lectures 22 and 23 Introduction to Network Models 4 



/
1

Infinite Strategy Spaces: Cournot Competition 

Cournot competition 

I 

I 

I 

Two firms producing a homogeneous good for the same market 

The action of a player i is a quantity, si ∈ [0, ∞) (amount of good it 
produces). 

The utility for each player is its total revenue minus its total cost, 

ui (s1, s2) = p(s1 + s2) × si − c × si 

I 

where p(Q) is the price of the good (as a function of the total 
amount, Q ≡ s1 + s2), and c is unit cost (same for both firms). 

Assume for simplicity that c = 1 and p(Q) = max{0, 2 − Q} 
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Cournot Competition 

∗I A useful characterization of Nash equilibrium: an action profile s is 
a Nash equilibrium if and only if 

∗ ∗ s ∈ arg max ui (si , s−i ).i 
si ∈Si 

∗I In other words, at equilibrium (s ∗) each player’s action (s ) is a best i 
∗ response to the actions of other players (s ).−i 

I Firm 1 faces the following optimization problem 

∗ ∗ max u1(s1, s2 ) = max p(s1 + s2 ) × s1 − s1, 
s1≥0 s1≥0 

∗ ∗where p(s1 + s ) = max(0, 2 − s1 − s ).2 2 

I A useful observation: 

∗ ∗ max p(s1 + s2 ) × s1 − s1 = max (2 − s1 − s2 ) × s1 − s1 (why?) 
s1≥0 s1≥0 

∗ = max (1 − s1 − s2 ) × s1. 
s1≥0 
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Intersection of Best Responses 

I Firm 1’s decision problem: 

max u1(s1, s2 
∗ ) = max (1 − s1 − s2 

∗ ) × s1. 
s1≥0 s1≥0 

I Using first order optimality condition: � 
1−s ∗ 

∗ 2
2 if s2 

∗ ≤ 1,
s = 1 

0 otherwise. 

I Similarly, for firm 2: � ∗ 
1∗ 

1−s 
if s1 

∗ ≤ 1,
2s = 2 
0 otherwise. 

Unique Nash equilibrium at the intersection of the two best responses: 
∗ ∗ 1(s1 , s ) = ( 1 , )2 3 3 
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Network Cost Sharing 

I A very popular strategic problem is the use of common resources. 
I Use of different common resources creates congestion. 
I For example, United Airlines would naturally take into account the 

congestion implications of using Washington Dulles as a hub. 
I You might switch between different lines at supermarket checkout. 
I Often in networks the problem is getting from end of the network to 

another. 
I Whether there is a small or a large number of players, they are likely 

to act strategically. 
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Tragedy of Commons (Hardin 1968) 

“The population problem has no technical solution; it requires a fundamental 
extension in morality.” Hardin (1968). 

I Herdsmen share a pasture 

I If a herdsman add one more cow, he gets the whole benefit, but the cost 
(additional grazing) is shared by all 

I Inevitably, herdsmen add too many cows, leading to overgrazing 

This arises in: 

I Pollution, Carbon emission 

I Uncontrolled human population 
growth 

I Overfishing 

I Energy resources 

Solutions: 
I Privatization 

I Governmental regulations 

I Internalizing externalities (individual pricing) 
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Everyone ends up paying p for u

Tragedy of Commons: Diner’s Dilemma 

I n individuals go out to eat 
I Prior to ordering, they agree to split the check equally between all of 

them 
I uH : joy of eating the expensive meal, pH : cost of the expensive meal 
I uL: joy of eating the cheap meal, pL: cost of the cheap meal 
I Whether to order the expensive or cheap dish? 

Assume: 
H L H LI uH − p < uL − p , uH − 1 p > uL − 1 pn n 

H H LI Example: n = 3, u = 30, p = 25, u = 25, 
Lp = 15 

Equilibrium Analysis: 
I Let x be sum of orders of others 
I H − 1 H − 1utility of ordering expensive: u p x n n 

I L − 1 L − 1utility of ordering cheap: u p x n n 

I Ordering expensive is a dominant strategy 
our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/.I Unique Nash equilibrium: everyone orders 

expensive 
Lectures 22 and 23 Introduction to Network Models 
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A Network Traffic Example 

I Two players A and B each need to transfer one unit of traffic. 
I Either use the upper or the lower route, minimizing their total travel 

time. 
I Congestion times: 

I independent from the traffic flow: 2.1 for two roads 
I x where x is the flow through the road. 

x

x

2.1

2.1

1

1

2.1

2.1

A

B

A

B

Nash equilibrium
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Braess’ Paradox 

I Idea: Addition of an intuitively helpful route. 
I Paradoxical, since the addition of another route should help traffic. 
I In fact, the addition of a link can never increase aggregate delay in 

the social optimum. 
I Idea first introduced in transportation networks by Dietrich Braess in 

1968. 
I This is basically the prisoners’ dilemma again. 
I Steinberg and Zangwill ’83 provided necessary and sufficient 

conditions for Braess paradox to occur in networks 
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Braess’ Paradox in Cities Using Traffic Data 

Youn, Hyejin, Hawoong Jeong, and Michael T. Gastner. "The Price of Anarchy in Transportation Networks: Efficiency and 
Optimality Control." Physical Review Letters 101 (2008): 12708-1–4. © American Physical Society. All rights reserved. This content is 
excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/. 

Closing streets (e.g. most of Mass. Ave in Cambridge or Blackfriars 
Bridge in London) marked by black dotted lines reduces overall 
congestion.1 

1Youn, H. et al. (2009), Price of Anarchy in Transportation Networks: Efficiency 
and Optimality Control, Phys. Rev. Lett.. 
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Spanning Tree Game 

I Let’s define a spanning tree problem. 
I There is a finite set of players N = {1, 2, . . . , n} (e.g. 

cities/municipalities) and a graph G (V , E ) (e.g. possible 
infrastructure routes) where V = N ∪ {v0}

I The players want to connect to the source node v0 

I Each edge has a cost a : E 7→ R++, but the node gets the full 
benefit as long as there is a path from the node to the source node. 

I The cost of each road (edge) is equally shared among the cities 
using the road. 

I What are the equilibrium connection configurations? Are they 
socially optimal? 

15 51 
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Spanning Tree Game 

Example: 

I cost of direct road: 1.4 (4 roads) 

I inter city road: 1 (3 roads) 

Boston Worcester Amherst Pittsfield 

Source 

1 1 1 

1.4 1.4 1.4 1.4 

16 
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Spanning Tree Game 

Example: 

I cost of direct road: 1.4 (4 roads) 

I inter city road: 1 (3 roads) 

I Cost for Boston: 1.4 1+
4 2 + 1 > 1.4 

⇒ Boston chooses direct link to 
source (not equilibrium) 

I Only Boston has incentive to 
unilaterally deviate (why?) 

I Socially optimal configuration: 

3 + 1.4 = 4.4 

Boston Worcester Amherst Pittsfield 

Source 

1 1 1 

1.4 1.4 

16 / 
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Spanning Tree Game 

Example: 

I cost of direct road: 1.4 (4 roads) 

I inter city road: 1 (3 roads) 

I 1.4 1+
4 3 

1+ 
2 + 1 > 1.4 ⇒ Boston 

chooses direct link to source (not 
equilibrium) 

I Only Boston has incentive to 
unilaterally deviate (why?) 

I Also socially optimal. 

Boston Worcester Amherst Pittsfield 

Source 

1 1 1 

1.4 1.4 

16 
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Spanning Tree Game 

Example: 

I cost of direct road: 1.4 (4 roads) 

I inter city road: 1 (3 roads) 

I 1.4 + 1 > 1.4 ⇒ Boston chooses 
2 
direct link to source (not 
equilibrium) 

I Only Boston has incentive to 
unilaterally deviate (why?) 

Boston Worcester Amherst Pittsfield 

Source 

1 

1.4 1.4 1.4 1.4 
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Spanning Tree Game 

Example: 

I cost of direct road: 1.4 (4 roads) 

I inter city road: 1 (3 roads) 

I Unique equilibrium configuration 

I Not socially optimal 

I Total cost: 5.6 > 4.4 

Boston Worcester Amherst Pittsfield 

Source 

1.4 1.4 1.4 1.4 
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Spanning Tree Game 

Example: 

I cost of direct road: 1.4 (4 roads) 

I inter city road: 1 (3 roads) 

I Unique equilibrium configuration 

I Not socially optimal 

I Total cost: 5.6 > 4.4 

I Source (government?) imposes a 
tax (0.7) on direct roads. 

Boston Worcester Amherst Pittsfield 

Source 

1 1 1 

2.1 2.1 2.1 2.1 
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Spanning Tree Game 

Example: 

I Source (government?) imposes a 
tax (0.7) on direct roads. 

I Two Nash equilibria: both socially 
optimal 

I Boston’s cost: 2
4 
.1 + 1 < 2.1. 
2.1 1I Amherst’s cost: 
4 + 

2 < 2.1. 
2.1 1I Pitsfield’s cost: + + 1 < 2.1.
4 2 

Boston Worcester Amherst Pittsfield 

Source 

1 1 1 

2.1 
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Spanning Tree Game 

Example: 

I Source (government?) imposes a 
tax (0.7) on direct roads. 

I Two Nash equilibria: both socially 
optimal 

I Boston’s cost: 2
4 
.1 + 1 < 2.1. 
2.1 1I Amherst’s cost: 
4 + 

2 < 2.1. 
2.1 1I Pitsfield’s cost: 
4 + 

2 + 1 < 2.1. 

I Taxation benefits everyone, total 
cost: 5.1, source profit: 0.7 

I More efficient ways to share costs 
(cooperative games). 

Boston Worcester Amherst Pittsfield 

Source 

1 1 1 

2.1 
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