

1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lectures 13 and 14

イロン イロン イヨン イヨン

Dynamical systems:

- Linear and non-linear
- Convergence
- Linear algebra and Lyapunov functions
- discrete and continuous

æ

<ロ> <同> <同> < 同> < 同>

Dynamical systems

- Discrete time system: time indexed by k
 - let $x(k) \in \mathbb{R}^n$ denote system state
 - examples: state of infection, levels of consumption for a product, opinions
 - amount of labor, steele and coal available in an economy, ...
- System dynamics: for any $k \ge 0$

$$x(k+1) = F(x(k)) \tag{1}$$

・ロト ・回ト ・ヨト ・ヨト

for some $F : \mathbb{R}^n \to \mathbb{R}^n$

- Primary questions:
 - ▶ Is there an equilibrium $x^* \in \mathbb{R}^n$, i.e. $x^* = F(x^*)$.
 - If so, does $x(k) \rightarrow x^*$ and how quickly?

• Linear system dynamics: for any $k \ge 0$

$$x(k+1) = Ax(k) + b \tag{2}$$

・ロト ・回ト ・ヨト ・ヨト

- for some $A \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^n$
- example: Leontif's input-output model of economy: output from one industrial sector may become an input to another industrial sector.
- best response to the consumption level of friends
- We'll study
 - Existence and characterization of equilibrium.
 - Convergence.
- Initially, we'll consider $b = \mathbf{0}$
 - Later, we shall consider generic $b \in \mathbb{R}^n$

Linear dynamical systems

|4**1**17

• Consider

$$egin{aligned} & x(k) = Ax(k-1) \ & = A imes Ax(k-2) \ & \dots \ & = A^k x(0) \end{aligned}$$

• So what is A^k ?

• For n = 1, let $A = a \in \mathbb{R}_+$:

$$x(k) = a^k x(0) \stackrel{k \to \infty}{\to} \begin{cases} 0 \text{ if } 0 \leq a < 1 \\ x(0) \text{ if } a = 1 \\ \infty \text{ if } 1 < a. \end{cases}$$

æ

・ロン ・部 と ・ ヨ と ・ ヨ と …

• For n > 1, if A were diagonal, i.e.,

$$A = \begin{pmatrix} a_1 & & & \\ & a_2 & & \\ & & \ddots & \\ & & & a_n \end{pmatrix}$$

Then

$$A^{k} = \left(egin{array}{cccc} a_{1}^{k} & & & & & \ & & a_{2}^{k} & & & & \ & & & a_{n}^{k} & & \ & & & \ddots & & \ & & & & & a_{n}^{k} \end{array}
ight)$$

- and, likely that we can analyze behavior x(k)
- but, most matrices are not diagonal

э

・ロン ・部 と ・ ヨ と ・ ヨ と …

• Diagonalization: for a large class of matrices A,

• it can be represented as $A = S\Lambda S^{-1}$, where diagonal matrix

$$\Lambda = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & & \lambda_n \end{pmatrix}$$

 $- \hspace{0.1 cm}$ and $\hspace{0.1 cm} S \in \mathbb{R}^{n \times n}$ is invertible matrix

Then

$$x(k) = (S\Lambda S^{-1})^k x(0)$$

= $S\Lambda^k S^{-1} x(0) = S\Lambda^k c$

where $c = c(x(0)) = S^{-1}x(0) \in \mathbb{R}^n$

æ

<ロ> <同> <同> < 同> < 同> < 同> < □> <

• Suppose

$$S = \begin{pmatrix} | & & | \\ s_1 & \dots & s_n \\ | & & | \end{pmatrix}$$

• Then

$$egin{aligned} & x(k) = S \Lambda^k c \ & = \sum_{i=1}^n c_i \lambda_i^k s_i \end{aligned}$$

æ

• Let
$$0 \le |\lambda_n| \le |\lambda_{n-1}| \le \dots \le |\lambda_2| < |\lambda_1|$$

$$x(k) = \sum_{i=1}^n c_i \lambda_i^k s_i = \lambda_1^k \left(c_1 s_1 + \sum_{i=2}^n c_i \left(\frac{\lambda_i}{\lambda_1} \right)^k s_i \right)$$

• Then

$$\|x(k)\| \stackrel{k \to \infty}{\to} egin{cases} 0 ext{ if } |\lambda_1| < 1 \ |c_1| \|s_1\| ext{ if } |\lambda_1| = 1 \ \infty ext{ if } |\lambda_1| > 1 \end{cases}$$

 $\circ\;$ moreover, for $|\lambda_1|>1$,

$$\|\lambda_1^{-k}x(k)-c_1s_1\|\to 0.$$

(日)

Diagonalization

- When can a matrix $A \in \mathbb{R}^{n \times n}$ be diagonalized?
 - ►
 - When A has n distinct eigenvalues, for example
 - Another example: Real symmetric matrices
 - In general, all matrices are block-diagonalizable a la Jordan form
- \circ Eigenvalues of A
 - Roots of *n* order (characteristic) polynomial: $det(A \lambda I) = 0$
 - Let them be $\lambda_1, \ldots, \lambda_n$
- \circ Eigenvectors of A
 - Given λ_i , let $s_i \neq \mathbf{0}$ be such that $As_i = \lambda_i s_i$
 - Then s_i is eigenvector corresponding to eigenvalue λ_i
- If all eigenvalues are distinct, then eigenvectors are linearly independent.

ヘロト ヘヨト ヘヨト ヘヨト

- If all eigenvalues are distinct, then eigenvectors are linearly independent.
- **Proof.** Suppose not and let s_1 , s_2 are linearly dependent.
 - ►
 - that is, $a_1s_1 + a_2s_2 = \mathbf{0}$ for some $a_1, a_2 \neq \mathbf{0}$
 - that is, $a_1As_1 + a_2As_2 = \mathbf{0}$, and hence $a_1\lambda_1s_1 + a_2\lambda_2s_2 = \mathbf{0}$
 - multiplying first equation by λ_2 and subtracting second

$$a_1(\lambda_2 - \lambda_1)s_1 = \mathbf{0}$$

- that is, $a_1 = 0$; similarly, $a_2 = 0$. Contradiction.
- argument can be similarly extended for case of *n* vectors.

・ロン ・四 と ・ ヨ と ・ ヨ と …

- If all eigenvalues are distinct $(\lambda_i \neq \lambda_j, i \neq j)$, then eigenvectors, s_1, \ldots, s_n , are linearly independent.
- \circ Therefore, we have invertible matrix S, where

$$S = \begin{pmatrix} | & & | \\ s_1 & \dots & s_n \\ | & & | \end{pmatrix}$$

• Consider diagonal matrix of eigenvalues

$$\Lambda = \left(\begin{array}{ccc} \lambda_1 & & \\ & \ddots & \\ & & & \lambda_n \end{array}\right)$$

・ロト ・回ト ・ヨト ・ヨト

Diagonalization

• Consider

$$AS = \begin{pmatrix} | & & | \\ \lambda_1 s_1 & \dots & \lambda_n s_n \\ | & & | \end{pmatrix}$$
$$= \begin{pmatrix} | & & | \\ s_1 & \dots & s_n \\ | & & | \end{pmatrix} \begin{pmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & & \lambda_n \end{pmatrix}$$
$$= S\Lambda$$

• Therefore, we have diagonalization $A = S\Lambda S^{-1}$

• Remember: not every matrix is diagonalizable, e.g.
$$A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

æ

• Let us consider linear system with $b \neq \mathbf{0}$:

$$x(k+1) = Ax(k) + b$$

= $A(Ax(k-1) + b) + b = A^2x(k-1) + (A+I)b$
...

$$= A^{k}x(0) + \Big(\sum_{j=0}^{k-1} A^{k-j-1}\Big)b.$$

• Let $A = S \wedge S^{-1}$, $c = S^{-1} x(0)$ and $d = S^{-1} b$. Then

$$\mathbf{x}(k+1) = \sum_{i=1}^n c_i s_i \lambda_i^k + d_i s_i (\sum_{j=0}^{k-1} \lambda_i^j)$$

Linear dynamical systems

• Let
$$A = S\Lambda S^{-1}$$
, $c = S^{-1}x(0)$ and $d = S^{-1}b$. Then

$$x(k+1) = \sum_{i=1}^{n} c_i s_i \lambda_i^k + d_i s_i (\sum_{j=0}^{k-1} \lambda_i^j)$$

• Let
$$0 \le |\lambda_n| \le |\lambda_{n-1}| \le \cdots \le |\lambda_2| \le |\lambda_1|$$
. Then
• If $|\lambda_1| \ge 1$, the sequence is divergent $(\to \infty)$
- If $|\lambda_1| < 1$, it converges as

$$\begin{aligned} x(k) &\stackrel{k \to \infty}{\to} \sum_{i=1}^{n} s_{i} \frac{d_{i}}{1 - \lambda_{i}} \\ &= S \begin{pmatrix} \frac{1}{1 - \lambda_{1}} & & \\ & \ddots & \\ & & \frac{1}{1 - \lambda_{n}} \end{pmatrix} S^{-1} b = (I - A)^{-1} b \end{aligned}$$

æ

• For linear system, equilibrium x^* should satisfy

$$x^{\star} = Ax^{\star} + b$$

• The solution to the above exists when A does not have an eigenvalue equal to 1, which is

$$x^{\star} = (I - A)^{-1}b$$

• But, as discussed, it may not be reached unless $|\lambda_1| < 1!$ (unstable equilibrium)

• Consider nonlinear system

$$\begin{aligned} x(k+1) &= F(x(k)) \\ &= x(k) + (F(x(k)) - x(k)) \\ &= x(k) + G(x(k)) \end{aligned}$$

where G(x) = F(x) - x

• Continuous approximation of the above (replace k by time index t)

$$\frac{dx(t)}{dt} = G(x(t))$$

• When does
$$x(t) \rightarrow x^*$$
?

▲□ → ▲圖 → ▲ 画 → ▲ 画 →

- \circ Let there be a Lyapunov function $V:\mathbb{R}^n
 ightarrow\mathbb{R}_+$
- Such that
 - 1. V is minimum at x^*
 - 2. $\frac{dV(x(t))}{dt} < 0$ if $x(t) \neq x^*$

that is, $\nabla V(x(t))^T G(x(t)) < 0$ if $x(t) \neq x^*$

• Then $x(t) \rightarrow x^*$

イロト イヨト イヨト イヨト 三日

Lyapunov function: An Example

- A simple model of Epidemic
 - Let $I(k) \in [0,1]$ be fraction of population that is infected
 - and $S(k) \in [0, 1]$ be the fraction of population that is susceptible to infection
 - Population is either infected or susceptible: I(k) + S(k) = 1
- · Due to "social interaction" they evolve as

$$I(k+1) = I(k) + \beta I(k)S(k)$$

$$S(k+1) = S(k) - \beta I(k)S(k)$$

where $\beta \in (0,1)$ is a parameter captures "infectiousness"

· Question: what is the equilibrium of such a society?

・ロト ・回ト ・ヨト ・ヨト

• Since I(k) + S(k) = 1, we can focus only on one of them, say S(k)

• Then

$$S(k+1) = S(k) - \beta(1-S(k))S(k)$$

• That is, continuous approximation suggests

$$\frac{dS(t)}{dt} = -\beta(1-S(t))S(t).$$

• An easy Lyapunov function is
$$V(S) = S$$

◆□ → ◆□ → ◆ □ → ◆ □ → ○ □

• For
$$V(S) = S$$
:

$$rac{dV(S(t))}{dt} = V'(S(t))rac{dS(t)}{dt} \ = -eta(1-S(t))S(t)$$

• Then, for
$$S(t) \in [0,1)$$
 if $S(t)
eq 0$,

$$\frac{dV(S(t))}{dt} < 0$$

• And V is minimized at 0

• Therefore, if S(0) < 1, then $S(t) \rightarrow 0$: entire population is *infected*!

・ロン ・回 と ・ ヨ と ・ ヨ と …

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.