Homework 6

6.1 Romeo Juliet

[50 points] Romeo and Juliet are in love. Romeo positively reacts to Juliet; he loves her more if she shows him more love and he loves her less when she shows less. Juliet is a fickle lover; she loves Romeo more when he loves her less and visa versa. We want to model their love affair as a dynamical system in order to predict what will happen to them in the future. To do so, let $x(k)$ be the amount of love Romeo has for Juliet (measured in love units!), and let $y(k)$ be the amount of love Juliet has for Romeo. A simple dynamical system representing their interactions is as follows: for some real numbers a and b, the love at time $k+1$ is given by

$$
x(k+1)=x(k)+a y(k) \quad y(k+1)=b x(k)+y(k) .
$$

Assume that, initially $x(0), y(0)>0$. Answer the following questions:

1. Determine the signs of a and b to reflect the behavior of Romeo and Juliet.
2. For what ranges of parameters a and b will Romeo's and Juliet's love fizzle away regardless of where they start?
3. For what ranges of parameters a and b will Romeo and Juliet be forever caught in a cycle of love and hate?
4. Both Romeo and Juliet were burnt before from loving someone else that does not love them. As a result, their love tomorrow discounts their own love today by a factor of 0.5 . Rewrite the model and answer questions 1 and 2.
5. What happens if both Romeo's and Juliet's love increases by one unit every single time regardless of the actions of the other? Answer questions 1 and 2.

6.2 Markov Chains

There are n fish in a lake, some of which are green and the rest blue. Each day, Helen catches 1 fish. She is equally likely to catch any one of the n fish in the lake. She throws back all the fish, but paints each green fish blue before throwing it back in. Let G_{i} denote the event that there are i green fish left in the lake.

1. Show how to model this fishing exercise as a Markov chain, where G_{i} are the states (Explain why your model satisfies the Markov property; how many states does this Markov chain have?)
2. Find the transition probabilities $p_{i j}$.
3. Is $P=\left[p_{i j}\right]$ irreducible? Is it aperiodic?
4. Does this Markov chain have a stationary distribution? If yes, what is the distribution?

MIT OpenCourseWare
https://ocw.mit.edu/

1.022 Introduction to Network Models

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

