

1.022 Introduction to Network Models

Amir Ajorlou

Laboratory for Information and Decision Systems Institute for Data, Systems, and Society Massachusetts Institute of Technology

Lectures 15-17

<ロ> <同> <同> < 同> < 同>

• Positive linear system

- Let $A = [A_{ij}] \in \mathbb{R}^{n \times n}$ be such that $A_{ij} > 0$ for all $1 \le i, j \le n$

$$x(k) = Ax(k-1)$$
, for $k \ge 1$.

• Perron-Frobenius Theorem: let $A \in \mathbb{R}^{n \times n}$ be positive

- Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues such that

$$0 \leq |\lambda_n| \leq |\lambda_{n-1}| \leq \cdots \leq |\lambda_2| \leq |\lambda_1|$$

- Then, maximum eigenvalue $\lambda_1 > 0$
- It is unique, i.e. $|\lambda_1| > |\lambda_2|$
- Corresponding eigenvector, say s_1 is component-wise > 0

・ロト ・回ト ・ヨト ・ヨト

• More generally, we call A positive system if

- $A \ge 0$ component-wise
- For some integer $m \ge 1$, $A^m > 0$
- If eigenvalues of A are $\lambda_i, \ 1 \leq i \leq n$
- Then eigenvalues of A^m are $λ_i^m$, 1 ≤ i ≤ m
- The Perron-Frobenius for A^m implies similar conclusions for A
- o Special case of positive systems are Markov chains
 - we consider them next
 - as an important example, we'll consider random walks on graphs

・ロト ・回ト ・ヨト ・ヨト

An Example

• Shuffling cards

Image courtesy of Poker Photos on flickr. License CC BY.

- A special case of Overhead shuffle:
 - choose a card at random from deck and place it on top
- How long does it take for card deck to become random?
 - Any one of 52! orderings of cards is equally likely

<ロ> <同> <同> < 同> < 同>

An Example

• Markov chain for deck of 2 cards

- Two possible card order: (1,2) or (2,1)
- Let X_k denote order of cards at time $k \ge 0$

$$\mathbb{P}(X_{k+1} = (1,2)) = \mathbb{P}(X_k = (1,2) \text{ and card } 1 \text{ chosen}) + \\\mathbb{P}(X_k = (2,1) \text{ and card } 1 \text{ chosen}) \\= \mathbb{P}(X_k = (1,2)) \times 0.5 + \mathbb{P}(X_k = (2,1)) \times 0.5 \\= 0.5$$

<ロ> <同> <同> < 同> < 同>

Notations

- $\circ~$ Markov chain defined over state space $\textit{N} = \{1, \ldots, n\}$
 - $X_k ∈ N \text{ denote random variable representing state at time } k ≥ 0$ $- P_{ij} = \mathbb{P}(X_{k+1} = j | X_k = i) \text{ for all } i, j ∈ N \text{ and all } k ≥ 0$

$$\mathbb{P}(X_{k+1}=i) = \sum_{j \in N} P_{ji} \mathbb{P}(X_k=j)$$

• Let $p(k) = [p_i(k)] \in [0,1]^n$, where $p_i(k) = \mathbb{P}(X_k = i)$

$$p_i(k+1) = \sum_{j \in N} p_j(k) P_{ji}, \text{ for all } i \in N \quad \Leftrightarrow \quad p(k+1)^T = p(k)^T P$$

• $P = [P_{ij}]$: probability transition matrix of Markov chain

- non-negative:
$$P \ge 0$$

- row-stochastic: $\sum_{j\in \mathsf{N}}\mathsf{P}_{ij}=1$ for all $i\in\mathsf{N}$

- Markov chain dynamics: $p(k+1) = P^T p(k)$
 - Let the probability transition matrix P > 0: positive linear system
 - Perron-Frobenius:
 - ▶ P^T has unique real positive largest eigenvalue: $\lambda_{max} = \lambda_1 > 0$
 - Corresponding eigenvector: $P^T p^* = \lambda_{\max} p^*$, then $p^* > 0$.
 - We assume p^* normalized such that $p_1^* + \ldots + p_n^* = 1$.

$$\circ\;$$
 We claim $\lambda_{\mathsf{max}} = 1$ and $p(k) o p^{\star}$

$$\begin{array}{l} - \ \operatorname{Recall}, \ \|p(k)\| \to 0 \ \text{if} \ \lambda_{\max} < 1 \ \text{or} \ \|p(k)\| \to \infty \ \text{if} \ \lambda_{\max} > 1 \\ - \ \operatorname{But} \ \sum_i p_i(k) = 1 \ \text{for all} \ k, \ \text{since} \ \sum_i p_i(0) = 1 \ \text{and} \end{array}$$

$$\sum_i p_i(k+1) = p(k+1)^T \mathbf{1} = p(k)^T P \mathbf{1}$$

 $= p(k)^T \mathbf{1} = \sum_i p_i(k) = 1.$

- We have used $P\mathbf{1} = \mathbf{1}$
- Therefore, λ_{\max} must be 1 and $p(k) \rightarrow c_1 p^* = p^*$ (argued before)
- $-c_1 = 1$ since $\sum_i p_i(k) = \sum_i p_i^* = 1$

イロト 不良 とうほう 不良 とうほう

• Stationary distribution: if P > 0, then there exists $p^* > 0$ such that

$$p^{\star} = P^{T} p^{\star} \quad \Leftrightarrow \quad p_{i}^{\star} = \sum_{j} P_{ji} p_{j}^{\star}, \text{ for all } i.$$
 $p(k) \stackrel{k \to \infty}{\to} p^{\star}$

• Above holds also when $P^k > 0$ for some $k \ge 1$

Sufficient *structural* condition: *P* is irreducible and aperiodic
 Irreducibility:

− for each $i \neq j$, there is a positive probability to reach j starting from i − Aperiodicity:

- There is no partition of N so that Markov chain state 'periodically' rotates through those partitions
- Special case: for each i, $P_{ii} > 0$

ヘロト ヘヨト ヘヨト ヘヨト

- Consider an undirected connected graph G over $N = \{1, \dots, n\}$
 - It's adjacency matrix A
 - Let k_i be degree of node $i \in N$
- $\circ~$ Random walk on G
 - Each time, remain at current node or walk to a random neighbor
 - Precisely, for any $i,j \in N$

$$P_{ij} = \begin{cases} \frac{1}{2} \text{ if } i = j \\ \frac{1}{2k_i} \text{ if } A_{ij} > 0, i \neq j \\ 0 \text{ if } A_{ij} = 0, i \neq j \end{cases}$$

· Does it have stationary distribution? If yes, what is it?

・ロン ・回 と ・ ヨ と ・ ヨ と …

Random walk on Graph

• Answer: Yes, because irreducible and aperiodic.

- Further, $p_i^* = k_i/2m$, where *m* is number of edges

• Why?

$$-P = \frac{1}{2}(I + D^{-1}A), p^{\star} = \frac{1}{2m}D\mathbf{1}, \text{ where } D = diag(k_i), \mathbf{1} = [1]$$

$$p^{\star,T}P = \frac{1}{2}p^{\star,T}(I + D^{-1}A) = \frac{1}{2}p^{\star,T} + \frac{1}{2}p^{\star,T}D^{-1}A$$

$$= \frac{1}{2}p^{\star,T} + \frac{1}{2m}\mathbf{1}^{T}A = \frac{1}{2}p^{\star,T} + \frac{1}{4m}(A\mathbf{1})^{T}, \text{ because } A = A^{T}$$

$$= \frac{1}{2}p^{\star,T} + \frac{1}{4m}[k_i]^{T} = \frac{1}{2}p^{\star,T} + \frac{1}{2}p^{\star,T} = p^{\star,T}.$$

• Stationary distribution of random walk:

$$- p^{\star} = \frac{1}{2}(I + D^{-1}A)p^{\star}$$
$$- p^{\star}_{i} \propto k_{i} \rightarrow Degree \ centrality!$$

・ロン ・回 と ・ ヨ と ・ ヨ と …

Katz Centrality

• Consider solution of equation

$$\mathbf{v} = \alpha A \mathbf{v} + \beta$$

for some $\alpha > 0$ and $\beta \in \mathbb{R}^n$

- Then v_i is called Katz centrality of node i

- Recall
 - Solution exists if
 - $\det(I \alpha A) \neq 0$
 - equivalently A doesn't have α^{-1} as eigenvalue
 - But dynamically solution is achieved if
 - $-\,$ largest eigenvalue of A is smaller than α^{-1}
- Dynamic range of interest: $0 < \alpha < \lambda_{\max}^{-1}(A)$

<ロ> <同> <同> < 同> < 同>

Convergence to stationary distribution

- Let p(k) be probability distribution at time k

$$p(k+1) = P^T p(k)$$

- Let s_1, s_2, \ldots, s_n be eigenvectors of P^T
 - with associated eigenvalues $1, \lambda_2, \ldots, \lambda_n$

$$- 0 \leq |\lambda_n| \leq \cdots \leq |\lambda_2| < 1$$

- Define spectral gap $g(P) = 1 |\lambda_2|$
- Then, as argued for linear dynamics, we have

$$p(k) = c_1 s_1 + \sum_{i=2}^n \lambda_i^k c_k s_k$$

with some constants c_1, \ldots, c_n

ヘロン 人間 とくほと 人ほとう

Convergence to stationary distribution

|**||i**T

Therefore:

$$\|p(k) - c_1 s_1\| \le \sum_{i=2}^n |\lambda_i|^k |c_i| \|s_i\| \le (n-1)C |\lambda_2|^k$$

where $C = \max_{i=2}^{n} |c_i| ||s_i||$

- Subsequently

$$k \geq rac{\log n + \log C + \log rac{1}{arepsilon}}{\log rac{1}{|\lambda_2|}} \quad \Rightarrow \quad \|p(k) - c_1 \mathbf{1}\| \leq arepsilon.$$

- The $\varepsilon\text{-convergence}$ time scales as

$$T_{conv}(arepsilon) \sim rac{\log n + \log rac{1}{arepsilon}}{\log rac{1}{|\lambda_2|}}.$$

- Using log(1 – x) $\approx -x$ for $x \in$ (0,1), we get

$$T_{conv}(\varepsilon) \sim rac{\log n + \log rac{1}{arepsilon}}{g(P)}$$

Information spread

- Network graph G over $N = \{1, \ldots, n\}$ nodes, edges E
 - Given information at one of the nodes, spread it to all nodes
 - By "Gossiping"
 - How long does it take?

Gossip dynamics:

- At each time, each node $i \in N$ does the following:
- if node i does not have information, nothing to spread or gossip
- else if it does have information, it sends it to one of it's neighbors
 - let $P_{ii} = \mathbb{P}(i \text{ sends information to } j)$
 - by definition, $\sum_{j \in N} P_{ij} = 1$, and $P_{ij} = 0$ if j is not neighbor of i
- Example: uniform gossip

$$P_{ij}=1/k_i$$
 for all $(i,j)\in E$

・ロト ・回ト ・ヨト ・ヨト

Information spread

- Why study Gossip dynamics
 - This is how socially information spreads
 - More generally, this is how "contact" driven network effect spreads
 - This is how large scale distributed computer systems are built
 - e.g. Cassandra, an Apache Open Source Distributed DataBase
 - $-\,$ used by some of the largest organizations including Netflix, etc.

$\circ~\mbox{Key}$ question

- How long does it take for all nodes to receive information?
- How does it depend on the graph structure, P?
- Let us consider few examples:
 - A path
 - Star graph
 - Complete graph

<ロ> <同> <同> < 同> < 同>

15 / 23

Information spread and Conductance

• Conductance of $P = [P_{ij}]$ is defined as

$$\Phi(P) = \min_{S \subset N: |S| \le n/2} \frac{\sum_{i \in S, j \in S^c} P_{ij}}{|S|}$$
(1)

- Examples: uniform gossip
 - Path: $\Phi \sim \frac{1}{n}$
 - Star graph: $\Phi \sim \frac{1}{n}$
 - Complete graph: $\Phi \sim \frac{1}{2}$
- How long does it take for all nodes to almost surely receive information?
- A crisp answer

$$\mathsf{T}_{\mathsf{s}\mathsf{p}\mathsf{r}}\sim \frac{\log n}{\Phi(P)}$$

where $\Phi(P)$ is the conductance of P (and hence graph)

Cheeger's Inequality

• Spectral gap and conductance:

- Markov chain can not converge faster than information spread
- And information spreads in time $\log n/\Phi(P)$
- That is (ignoring constants)

$$rac{\log n}{\Phi(P)} \le rac{\log n}{g(P)} \quad \Leftrightarrow \quad g(P) \le \Phi(P)$$

- A remarkable fact known as Cheeger's inequality:

$$\frac{1}{2}\Phi(P)^2 \leq g(P) \leq 2\Phi(P).$$

- Generic question:
 - Given network G over nodes N with edges E
 - Each node $i \in N$ has information x_i
 - Compute a global function:

$$f(x_1,\ldots,x_n)$$

- by communicating along the network links
- processing *local* information at each node continually
- while keeping *limited* local state at each node

・ロト ・四ト ・ヨト ・ヨト

Know your neighbors

- The simplest possible example
 - Estimate number of nodes in the entire network at each node locally
 - there is no globally agreed unique names for each node
 - only local communications are allowed while keeping local state small
- A distributed algorithm
 - Every node generates a random number
 - − Node $i \in N$ draws random variable R_i as per an Exponential distribution of mean 1
 - Compute global minimum, $R^* = \min_{i \in N} R_i$
 - Using Gossip mechanism
 - Repeat the above for L times

 $-\ {\it R}^{\star}_{\ell}, \ 1 \leq \ell \leq {\it L}$ be global minimum computed during these ${\it L}$ trials

- Estimate of number of neighbors: $\hat{n} = \frac{L}{\sum_{\ell=1}^{L} R_{\ell}^{*}}$

・ロ・ ・ 日・ ・ 田・ ・ 日・

Exponential distribution

- $\circ~$ Exponential distribution with parameter $\lambda > 0$
 - -X be random variable with this distribution: for any $t \ge 0$,

$$\mathbb{P}(X > t) = \exp(-\lambda t).$$

- $\circ~$ Minimum of exponential random variables
 - Let X_i , $i \in N$ be independent random variables
 - Distribution of X_i is Exponential with parameter λ_i , $i \in N$

$$- X^* = \min_{i \in N} X_i$$

$$\mathbb{P}(X^* > t) = \mathbb{P}(\cap_{i \in N} X_i > t)$$

 $= \prod_{i \in N} \mathbb{P}(X_i > t)$
 $= \prod_{i \in N} \exp(-\lambda_i t)$
 $= \exp(-(\sum_i \lambda_i)t).$

Exponential distribution

- $\circ~$ Exponential distribution with parameter $\lambda>0$
 - -X be random variable with this distribution: for any $t \ge 0$,

 $\mathbb{P}(X > t) = \exp(-\lambda t).$

Minimum of exponential random variables

 $-X^* = \min_{i \in N} X_i$ has exponential distribution with parameter $\sum_{i \in N} \lambda_i$ Mean of exponential variable X with parameter $\lambda > 0$

$$\sim$$
 Mean of exponential variable X with parameter $\lambda > 0$

$$\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > t) dt$$

= $\int_0^\infty \exp(-\lambda t) dt$
= $\frac{1}{\lambda} \Big[\exp(-\lambda t) \Big]_\infty^0$
= $\frac{1}{\lambda}$.

ヘロト ヘヨト ヘヨト ヘヨト

$\circ~$ Back to counting nodes

- Node *i*'s random number has exponential distribution of parameter 1
- All nodes computed minimum of these numbers
- Hence minimum had exponential distribution with parameter n
- That is, mean of the minimum is 1/n
- Averaging over multiple trials gives a good estimation of 1/n

$\circ~$ How to add up numbers?

- Node *i* has a number x_i
- Node *i* draws random variable per exponential distribution of parameter x_i
- Then minimum would have exponential distribution with parameter $\sum_{i} x_{i}$
- Subsequently, algorithm is computing estimation of $\sum_i x_i$

< ロ > < 回 > < 回 > < 回 > < 回 > <

Gossip algorithm for finding minimum

• Gossip algorithm

- Node $i \in N$ has value R_i and goal is to compute $R^* = \min_i R_i$
- Node $i \in N$ keeps an estimate of global minimum, say \hat{R}_i^*
- Initially, $\hat{R}^{\star}_i = R_i$ for all $i \in N$
- Whenever node j contacts i

- Node
$$j$$
 sends \hat{R}_i^{\star} to i

- Node *i* updates
$$\hat{R}_i^{\star} = \min\left(\hat{R}_j^{\star}, \hat{R}_i^{\star}\right)$$

- How long does it take for everyone to know minimum?
 - Suppose $R_1 = R^*$.
 - Then the spread of minimum obeys exactly same dynamics as spreading information starting with node 1.
 - That is, *information spread* = *minimum computation*!

・ロト ・回ト ・ヨト ・ヨト

1.022 Introduction to Network Models Fall 2018

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.