### 1.022 Introduction to Network Models

## Amir Ajorlou

Laboratory for Information and Decision Systems
Institute for Data, Systems, and Society
Massachusetts Institute of Technology

Lectures 15-17

## Positive linear system

- Positive linear system
- Let $A=\left[A_{i j}\right] \in \mathbb{R}^{n \times n}$ be such that $A_{i j}>0$ for all $1 \leq i, j \leq n$
- System dynamics:

$$
x(k)=A x(k-1), \text { for } k \geq 1
$$

- Perron-Frobenius Theorem: let $A \in \mathbb{R}^{n \times n}$ be positive
- Let $\lambda_{1}, \ldots, \lambda_{n}$ be eigenvalues such that

$$
0 \leq\left|\lambda_{n}\right| \leq\left|\lambda_{n-1}\right| \leq \cdots \leq\left|\lambda_{2}\right| \leq\left|\lambda_{1}\right|
$$

- Then, maximum eigenvalue $\lambda_{1}>0$
- It is unique, i.e. $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$
- Corresponding eigenvector, say $s_{1}$ is component-wise $>0$


## Positive linear system

- More generally, we call $A$ positive system if
- $A \geq 0$ component-wise
- For some integer $m \geq 1, A^{m}>0$
- If eigenvalues of $A$ are $\lambda_{i}, 1 \leq i \leq n$
- Then eigenvalues of $A^{m}$ are $\lambda_{i}^{m}, 1 \leq i \leq m$
- The Perron-Frobenius for $A^{m}$ implies similar conclusions for $A$
- Special case of positive systems are Markov chains
- we consider them next
- as an important example, we'll consider random walks on graphs


## An Example

- Shuffling cards


Image courtesy of Poker Photos on flickr. License CC BY.

- A special case of Overhead shuffle:
- choose a card at random from deck and place it on top
- How long does it take for card deck to become random?
- Any one of 52! orderings of cards is equally likely


## An Example

- Markov chain for deck of 2 cards

- Two possible card order: $(1,2)$ or $(2,1)$
- Let $X_{k}$ denote order of cards at time $k \geq 0$

$$
\begin{aligned}
\mathbb{P}\left(X_{k+1}=(1,2)\right)= & \mathbb{P}\left(X_{k}=(1,2) \text { and card } 1 \text { chosen }\right)+ \\
& \mathbb{P}\left(X_{k}=(2,1) \text { and card } 1 \text { chosen }\right) \\
= & \mathbb{P}\left(X_{k}=(1,2)\right) \times 0.5+\mathbb{P}\left(X_{k}=(2,1)\right) \times 0.5 \\
= & 0.5
\end{aligned}
$$

## Notations

- Markov chain defined over state space $N=\{1, \ldots, n\}$
- $X_{k} \in N$ denote random variable representing state at time $k \geq 0$
- $P_{i j}=\mathbb{P}\left(X_{k+1}=j \mid X_{k}=i\right)$ for all $i, j \in N$ and all $k \geq 0$

$$
\mathbb{P}\left(X_{k+1}=i\right)=\sum_{j \in N} P_{j i} \mathbb{P}\left(X_{k}=j\right)
$$

- Let $p(k)=\left[p_{i}(k)\right] \in[0,1]^{n}$, where $p_{i}(k)=\mathbb{P}\left(X_{k}=i\right)$
$p_{i}(k+1)=\sum_{j \in N} p_{j}(k) P_{j i}$, for all $i \in N \quad \Leftrightarrow \quad p(k+1)^{T}=p(k)^{T} P$
- $P=\left[P_{i j}\right]$ : probability transition matrix of Markov chain
- non-negative: $P \geq 0$
- row-stochastic: $\sum_{j \in N} P_{i j}=1$ for all $i \in N$


## Stationary distribution

- Markov chain dynamics: $p(k+1)=P^{T} p(k)$
- Let the probability transition matrix $P>0$ : positive linear system
- Perron-Frobenius:
- $P^{T}$ has unique real positive largest eigenvalue: $\lambda_{\max }=\lambda_{1}>0$
- Corresponding eigenvector: $P^{\top} p^{\star}=\lambda_{\max } p^{\star}$, then $p^{\star}>0$.
- We assume $p^{\star}$ normalized such that $p_{1}^{\star}+\ldots+p_{n}^{\star}=1$.
- We claim $\lambda_{\max }=1$ and $p(k) \rightarrow p^{\star}$
- Recall, $\|p(k)\| \rightarrow 0$ if $\lambda_{\max }<1$ or $\|p(k)\| \rightarrow \infty$ if $\lambda_{\max }>1$
- But $\sum_{i} p_{i}(k)=1$ for all $k$, since $\sum_{i} p_{i}(0)=1$ and

$$
\begin{aligned}
\sum_{i} p_{i}(k+1) & =p(k+1)^{T} \mathbf{1}=p(k)^{T} P \mathbf{1} \\
& =p(k)^{T} \mathbf{1}=\sum_{i} p_{i}(k)=1
\end{aligned}
$$

- We have used $P \mathbf{1}=\mathbf{1}$
- Therefore, $\lambda_{\text {max }}$ must be 1 and $p(k) \rightarrow c_{1} p^{\star}=p^{\star}$ (argued before)
$-c_{1}=1$ since $\sum_{i} p_{i}(k)=\sum_{i} p_{i}^{\star}=1$


## Stationary distribution

- Stationary distribution: if $P>0$, then there exists $p^{\star}>0$ such that

$$
\begin{gathered}
p^{\star}=P^{\top} p^{\star} \Leftrightarrow p_{i}^{\star}=\sum_{j} P_{j i} p_{j}^{\star}, \text { for alli. } \\
p(k) \xrightarrow{k \rightarrow \infty} p^{\star}
\end{gathered}
$$

- Above holds also when $P^{k}>0$ for some $k \geq 1$
- Sufficient structural condition: $P$ is irreducible and aperiodic
- Irreducibility:
- for each $i \neq j$, there is a positive probability to reach $j$ starting from $i$
- Aperiodicity:
- There is no partition of $N$ so that Markov chain state 'periodically' rotates through those partitions
- Special case: for each $i, P_{i i}>0$


## Random walk on Graph

- Consider an undirected connected graph $G$ over $N=\{1, \ldots, n\}$
- It's adjacency matrix $A$
- Let $k_{i}$ be degree of node $i \in N$
- Random walk on $G$
- Each time, remain at current node or walk to a random neighbor
- Precisely, for any $i, j \in N$

$$
P_{i j}=\left\{\begin{array}{l}
\frac{1}{2} \text { if } i=j \\
\frac{1}{2 k_{i}} \text { if } A_{i j}>0, i \neq j \\
0 \text { if } A_{i j}=0, i \neq j
\end{array}\right.
$$

- Does it have stationary distribution? If yes, what is it?


## Random walk on Graph

- Answer: Yes, because irreducible and aperiodic.
- Further, $p_{i}^{\star}=k_{i} / 2 m$, where $m$ is number of edges
- Why?

$$
\begin{aligned}
-P & =\frac{1}{2}\left(I+D^{-1} A\right), p^{\star}=\frac{1}{2 m} D \mathbf{1}, \text { where } D=\operatorname{diag}\left(k_{i}\right), \mathbf{1}=[1] \\
p^{\star, T} P & =\frac{1}{2} p^{\star, T}\left(I+D^{-1} A\right)=\frac{1}{2} p^{\star, T}+\frac{1}{2} p^{\star, T} D^{-1} A \\
& =\frac{1}{2} p^{\star, T}+\frac{1}{2 m} \mathbf{1}^{T} A=\frac{1}{2} p^{\star, T}+\frac{1}{4 m}(A \mathbf{1})^{T}, \text { because } A=A^{T} \\
& =\frac{1}{2} p^{\star, T}+\frac{1}{4 m}\left[k_{i}\right]^{T}=\frac{1}{2} p^{\star, T}+\frac{1}{2} p^{\star, T}=p^{\star, T} .
\end{aligned}
$$

- Stationary distribution of random walk:

$$
\begin{aligned}
& -p^{\star}=\frac{1}{2}\left(I+D^{-1} A\right) p^{\star} \\
& -p_{i}^{\star} \propto k_{i} \rightarrow \text { Degree centrality! }
\end{aligned}
$$

## Katz Centrality

- Consider solution of equation

$$
\mathbf{v}=\alpha A \mathbf{v}+\beta
$$

for some $\alpha>0$ and $\beta \in \mathbb{R}^{\mathbf{n}}$

- Then $v_{i}$ is called Katz centrality of node $i$
- Recall
- Solution exists if
$-\operatorname{det}(I-\alpha A) \neq 0$
- equivalently $A$ doesn't have $\alpha^{-1}$ as eigenvalue
- But dynamically solution is achieved if
- largest eigenvalue of $A$ is smaller than $\alpha^{-1}$
- Dynamic range of interest: $0<\alpha<\lambda_{\max }^{-1}(A)$


## Convergence to stationary distribution

- Let $p(k)$ be probability distribution at time $k$

$$
p(k+1)=P^{T} p(k)
$$

- Let $s_{1}, s_{2}, \ldots, s_{n}$ be eigenvectors of $P^{T}$
- with associated eigenvalues $1, \lambda_{2}, \ldots, \lambda_{n}$
$-0 \leq\left|\lambda_{n}\right| \leq \cdots \leq\left|\lambda_{2}\right|<1$
- Define spectral gap $g(P)=1-\left|\lambda_{2}\right|$
- Then, as argued for linear dynamics, we have

$$
p(k)=c_{1} s_{1}+\sum_{i=2}^{n} \lambda_{i}^{k} c_{k} s_{k}
$$

with some constants $c_{1}, \ldots, c_{n}$

## Convergence to stationary distribution

- Therefore:

$$
\left\|p(k)-c_{1} s_{1}\right\| \leq \sum_{i=2}^{n}\left|\lambda_{i}\right|^{k}\left|c_{i}\right|\left\|s_{i}\right\| \leq(n-1) C\left|\lambda_{2}\right|^{k}
$$

where $C=\max _{i=2}^{n}\left|c_{i}\right|\left\|s_{i}\right\|$

- Subsequently

$$
k \geq \frac{\log n+\log C+\log \frac{1}{\varepsilon}}{\log \frac{1}{\left|\lambda_{2}\right|}} \Rightarrow\left\|p(k)-c_{1} \mathbf{1}\right\| \leq \varepsilon
$$

- The $\varepsilon$-convergence time scales as

$$
T_{\text {conv }}(\varepsilon) \sim \frac{\log n+\log \frac{1}{\varepsilon}}{\log \frac{1}{\left|\lambda_{2}\right|}}
$$

- Using $\log (1-x) \approx-x$ for $x \in(0,1)$, we get

$$
T_{\text {conv }}(\varepsilon) \sim \frac{\log n+\log \frac{1}{\varepsilon}}{g(P)}
$$

## Information spread

- Network graph $G$ over $N=\{1, \ldots, n\}$ nodes, edges $E$
- Given information at one of the nodes, spread it to all nodes
- By "Gossiping"
- How long does it take?
- Gossip dynamics:
- At each time, each node $i \in N$ does the following:
- if node $i$ does not have information, nothing to spread or gossip
- else if it does have information, it sends it to one of it's neighbors
- let $P_{i j}=\mathbb{P}(i$ sends information to $j)$
- by definition, $\sum_{j \in N} P_{i j}=1$, and
$-P_{i j}=0$ if $j$ is not neighbor of $i$
- Example: uniform gossip
$-P_{i j}=1 / k_{i}$ for all $(i, j) \in E$


## Information spread

- Why study Gossip dynamics
- This is how socially information spreads
- More generally, this is how "contact" driven network effect spreads
- This is how large scale distributed computer systems are built
- e.g. Cassandra, an Apache Open Source Distributed DataBase
- used by some of the largest organizations including Netflix, etc.
- Key question
- How long does it take for all nodes to receive information?
- How does it depend on the graph structure, P?
- Let us consider few examples:
- A path
- Star graph

- Complete graph


## Information spread and Conductance

- Conductance of $P=\left[P_{i j}\right]$ is defined as

$$
\begin{equation*}
\Phi(P)=\min _{S \subset N:|S| \leq n / 2} \frac{\sum_{i \in S, j \in S^{c}} P_{i j}}{|S|} \tag{1}
\end{equation*}
$$

- Examples: uniform gossip
- Path: $\Phi \sim \frac{1}{n}$
- Star graph: $\Phi \sim \frac{1}{n}$
- Complete graph: $\Phi \sim \frac{1}{2}$
- How long does it take for all nodes to almost surely receive information?
- A crisp answer

$$
\mathrm{T}_{\mathrm{spr}} \sim \frac{\log n}{\Phi(P)}
$$

where $\Phi(P)$ is the conductance of $P$ (and hence graph)

## Cheeger's Inequality

- Spectral gap and conductance:
- Markov chain can not converge faster than information spread
- And information spreads in time $\log n / \Phi(P)$
- That is (ignoring constants)

$$
\frac{\log n}{\Phi(P)} \leq \frac{\log n}{g(P)} \Leftrightarrow g(P) \leq \Phi(P)
$$

- A remarkable fact known as Cheeger's inequality:

$$
\frac{1}{2} \Phi(P)^{2} \leq g(P) \leq 2 \Phi(P)
$$

## Distributed computation

- Generic question:
- Given network $G$ over nodes $N$ with edges $E$
- Each node $i \in N$ has information $x_{i}$
- Compute a global function:

$$
f\left(x_{1}, \ldots, x_{n}\right)
$$

- by communicating along the network links
- processing local information at each node continually
- while keeping limited local state at each node


## Know your neighbors

- The simplest possible example
- Estimate number of nodes in the entire network at each node locally
- there is no globally agreed unique names for each node
- only local communications are allowed while keeping local state small
- A distributed algorithm
- Every node generates a random number
- Node $i \in N$ draws random variable $R_{i}$ as per an Exponential distribution of mean 1
- Compute global minimum, $R^{\star}=\min _{i \in N} R_{i}$
- Using Gossip mechanism
- Repeat the above for $L$ times
$-R_{\ell}^{\star}, 1 \leq \ell \leq L$ be global minimum computed during these $L$ trials
- Estimate of number of neighbors: $\hat{n}=\frac{L}{\sum_{\ell=1}^{L} R_{\ell}^{\star}}$


## Exponential distribution

- Exponential distribution with parameter $\lambda>0$
- $X$ be random variable with this distribution: for any $t \geq 0$,

$$
\mathbb{P}(X>t)=\exp (-\lambda t) .
$$

- Minimum of exponential random variables
- Let $X_{i}, i \in N$ be independent random variables
- Distribution of $X_{i}$ is Exponential with parameter $\lambda_{i}, i \in N$
$-X^{*}=\min _{i \in N} X_{i}$

$$
\begin{aligned}
\mathbb{P}\left(X^{*}>t\right) & =\mathbb{P}\left(\cap_{i \in N} X_{i}>t\right) \\
& =\prod_{i \in N} \mathbb{P}\left(X_{i}>t\right) \\
& =\prod_{i \in N} \exp \left(-\lambda_{i} t\right) \\
& =\exp \left(-\left(\sum_{i} \lambda_{i}\right) t\right) .
\end{aligned}
$$

## Exponential distribution

- Exponential distribution with parameter $\lambda>0$
$-X$ be random variable with this distribution: for any $t \geq 0$,

$$
\mathbb{P}(X>t)=\exp (-\lambda t)
$$

- Minimum of exponential random variables
$-X^{*}=\min _{i \in N} X_{i}$ has exponential distribution with parameter $\sum_{i \in N} \lambda_{i}$
- Mean of exponential variable $X$ with parameter $\lambda>0$

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{0}^{\infty} \mathbb{P}(X>t) d t \\
& =\int_{0}^{\infty} \exp (-\lambda t) d t \\
& =\frac{1}{\lambda}[\exp (-\lambda t)]_{\infty}^{0} \\
& =\frac{1}{\lambda}
\end{aligned}
$$

## Exponential distribution

- Back to counting nodes
- Node i's random number has exponential distribution of parameter 1
- All nodes computed minimum of these numbers
- Hence minimum had exponential distribution with parameter $n$
- That is, mean of the minimum is $1 / n$
- Averaging over multiple trials gives a good estimation of $1 / n$
- How to add up numbers?
- Node $i$ has a number $x_{i}$
- Node $i$ draws random variable per exponential distribution of parameter $x_{i}$
- Then minimum would have exponential distribution with parameter $\sum_{i} x_{i}$
- Subsequently, algorithm is computing estimation of $\sum_{i} x_{i}$


## Gossip algorithm for finding minimum

- Gossip algorithm
- Node $i \in N$ has value $R_{i}$ and goal is to compute $R^{\star}=\min _{i} R_{i}$
- Node $i \in N$ keeps an estimate of global minimum, say $\hat{R}_{i}^{\star}$
- Initially, $\hat{R}_{i}^{\star}=R_{i}$ for all $i \in N$
- Whenever node $j$ contacts $i$
- Node $j$ sends $\hat{R}_{j}^{\star}$ to $i$
- Node $i$ updates $\hat{R}_{i}^{\star}=\min \left(\hat{R}_{j}^{\star}, \hat{R}_{i}^{\star}\right)$
- How long does it take for everyone to know minimum?
- Suppose $R_{1}=R^{\star}$.
- Then the spread of minimum obeys exactly same dynamics as spreading information starting with node 1.
- That is, information spread $=$ minimum computation!

MIT OpenCourseWare
https://ocw.mit.edu/

### 1.022 Introduction to Network Models

Fall 2018

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

