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Outline 

I Models of diffusion with network structure 
I Networked Susceptible-Infected-Susceptible (SIS) Model: In a general network, 
nodes can become infected and then recover in such a way that they become 
susceptible again 

I Models of diffusion without network structure 
I The classic SIS Epidemic Model: Individuals can become infected and then 
recover in such a way that they become susceptible again (the underlying 
structure is a complete graph). 

I The classic Susceptible-Infected-Removed Epidemic (SIR) Model: the diffusion 
takes place between infected nodes and susceptible nodes over a complete 
graph. Once a node reaches the “removed” state, it has either recovered and 
is no longer susceptible or contagious, or it has died. 

Optional Readings: 
Ch. 21 [Easley-Kleinberg] 
C. 17 [M.E.J. Newman] 
Ch. 7.1 and 7.2 [Matthew O. Jackson] 
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Introduction 

I We are interested in the following questions: 
I Under what conditions will an initial outbreak spread to a nontrivial portion of 
the population? 

I What percentage of the population will eventually become infected? 
I What is the effect of immunization policies? 
I How do contagions spread in populations? 
I Will a disease become an epidemic? 
I Who are the best people to vaccinate? 
I Will a given YouTube video go viral? 
I What individuals should we market to for maximizing product penetration? 
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Epidemics 

I Epidemiology is where Biology meets Social science 
I McKendrick & Kermack (1927): “Mathematical Theory of Epidemics” 

I Spread of an epidemic depends on the pathogen carrying it 
I As well as the “contagion” network structure 

I Goal of studying epidemics 
I Understand how to outbreaks happen 
I Use it to design intervention to curb / prevent the outbreak 

I Similar to “information spreading” 
I Spread of opinions in society 
I Adoption of new technology 
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A Networked Susceptible-Infected-Susceptible Model 

I SIS epidemic model over a network with n agents 
the network of contacts is given by adjacency matrix A = [aij ] 
the set of the neighbors of node i : Ni = {j | aij 6= 0}
probability of contact between individuals i and j during the time interval 
[t, t + Δ):Δaij . 

I Each individual (or node) is in one of the two states Xi (t) ∈ {0, 1}
I Susceptible: the state Xi (t) = 0 means that node i doesn’t have the disease at 
time t, but could catch it via contact 

I Infected: the state Xi (t) = 1 means that node i has the disease at time t; can 
pass it on to susceptible via contact 
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A Networked SIS Model (continued) 

I Dynamics 
I a susceptible individual comes in contact with his/her neighbor 
I if the neighbor is infected, susceptible becomes infected 
I infected nodes recover in such a way that they become susceptible again 

I Each node can switch to the infected state during the time interval [t, t + Δ) 
with a probability that depends on: 

I an infection rate β 
I the probability of contact with a neighbor in this interval (Δaij ) 
I their states 
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A Networked SIS Model (continued) 

I Probability of transition from susceptible to infected: 
Pr[Xi (t +Δ) = 1|Xj (t) = 1, Xi (t) = 0, Xk (t) = 0 for all k 6= j ] = βΔaij . 

Hence, 

Pr[Xi (t +Δ) = 0|Xj (t) = 1, Xi (t) = 0, Xk (t) = 0 for all k 6= j ] = 1 − βΔaij 

I Let X (t) := (X1(t), . . . , Xn(t))
> be the state vector: 

I Finally 

Pr[Xi (t + Δ) = 0|Xi (t) = 0, X (t)] = Πj∈{j|Xj (t)=1}(1 − βΔaij ) 

⇒ Pr[Xi (t +Δ) = 1|Xi (t) = 0, X (t)] = 1 − Πj∈{j|Xj (t)=1}(1 − βΔaij ) 
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A Networked SIS Model (continued) 

I Using the first-order approximation ( Δ � 1) X 
Pr[Xi (t +Δ) = 1|Xi (t) = 0, X (t)] = βΔaij Xj (t) 

j∈Ni 

Will see in your project! 
I Assume node i is infected, the probability of i recovering back to the 
susceptible state in the time interval [t, t + Δ) is given by 

Pr[Xi (t +Δ) = 0|Xi (t) = 1] = Δγ 

0 ≤ γ ≤ 1 is the curing rate. 
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A Networked SIS Model (continued) 

This spread model is still hard to analyze for large-scale networks (it has 2n states). 
One standard approach is to use a mean-field approximation. 

I Transitional probabilities: X 
Pr[Xi (t +Δ) = 1|Xi (t) = 0, X (t)] = βΔaij Xj (t) 

j∈Ni 

Pr[Xi (t +Δ) = 1|Xi (t) = 1] = 1 − Δγ 

I Define pi (t) = Pr[Xi (t) = 1] = E[Xi (t)]. Then, applying Bayes rule X 
pi (t + Δ) ≈ pi (t)(1 − Δγ) + (1 − pi (t)) βΔaij pj (t) 

j∈Ni 

I Shifting Δ → 0, the dynamics of pi (t) can be written as 

Xdpi (t) 
n 

= β(1 − pi (t)) aij pj (t) − γpi (t)
dt 

j=1 

This approximation is widely used in the field of epidemic analysis and control, since 
it performs numerically well for many realistic network topologies. 

Lecture 20 Introduction to Network Models 9 



example, we consider the epidemic model on a 2-d square lattice; 
infect any of the eight immediate neighbors. 

  0

Example: Spatial Epidemic Model Simulation 

I In this each 
cell can 
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Full mixing in classic Epidemiological models 

I Full mixing assumption 
In classic epidemiology, it is assumed that each individual can potentially have 
contact with any other in the population (= complete underlying graph). 

Image by David Benbennick. Source: Wikimedia Commons. This image is in the public domain. 
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Classic SIS Model 

I Traditional approach in mathematical epidemiology: no contact network 
I fully mixed : each individual contacts any other random individual 

I That is, contact graph is complete 
I due to symmetry, we can study it more carefully 

I Using the full mixing assumption (aij = 1/(n − 1) for i =6 j ) and the dynamics 

nXdpi (t) 
= β(1 − pi (t)) aij pj (t) − γpi (t)

dt 
j=1 

it follows that 
dpi (t) 

= β(1 − pi (t))pi (t) − γpi (t)
dt 

Because of the full mixing assumption and symmetry, all pi ’s are the same. 

Lecture 20 Introduction to Network Models 19 



Classic SIS Model (continued) 

dpi (t) 
= β(1 − pi (t))pi (t) − γpi (t)

dt 
I pi (t) and 1 − pi (t) are the fraction of susceptible and infected individuals 

I Let’s define x(t) := 1 − pi (t) and s(t) := pi (t) 

I Then, we get the exact classic SIS model 

ds(t) 
= γx(t) − βs(t)x(t),

dt 
dx(t) 

= βs(t)x(t) − γx(t), s(t) + x(t) = 1. 
dt 
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Classic SIS Model (continued) 

I The size of infection is given by 

dx(t) 
= β(1 − x(t))x(t) − γx(t). 

dt 

I Rearranging the terms we get 

dx(t) 
= dt. 

β(1 − x(t))x(t) − γx(t) 

Integrating both sides and after some simplifications we arrive at 

β − γ 
x(t) = −(β−γ)tβ + (β − γ)C e 

where 
(β − γ) − βx(0)

C = 
(β − γ)x(0) 
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Classic SIS Model (continued) 

I The size of infection x(t) is thus 

(β − γ)e(β−γ)t 

x(t) = x(0) 
β − γ + βx(0)(e(β−γ)t − 1) 

I Assuming β > γ, the steady state value of x(t) is (β − γ)/β, which is called 
an endemic state. 

Newman, M.E.J. Networks: An Introduction. Oxford University Press, 2010. © Oxford University Press. 
All rights reserved. This content is excluded from our Creative Commons license. For more 
information, see https://ocw.mit.edu/help/faq-fair-use/. 

The fraction of infected individuals in the SIS model grows with time 
following a logistic curve. The fraction infected never reaches unity, tending 
instead to an intermediate value at which the rates of infection and recovery 
are balanced. 
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SI Model 

I In the SI model, individuals once infected are infected forever (γ = 0). 
I An infected never recovers and stays infected and infectious to others. 
I The parameters of the SI model are 

I β infection rate: probability of contagion after contact per unit time 
I Zero recovery rate (γ = 0) ! 

I Dynamics: s(t) and x(t) be the fraction of individuals in susceptible, and 
infected state 

ds(t) 
dt 

= −βs(t)x(t), 

dx(t) 
dt 

= βs(t)x(t) 

where s(t) + x(t) = 1 for all t. 
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SIR Model 

I For many real diseases, people recover from infection 
I Moreover, they retain immunity to the disease after recovery (e.g., 
chickenpox). 

I This motivates SIR model 
I Three states: susceptible, infected, and recovered. 

I Dynamics: s(t), x(t) and r(t) be the fraction of individuals in susceptible, 
infected and recovered state 

ds(t) 
dt 

= −βs(t)x(t), 

dx(t) 
dt 

= βs(t)x(t) − γx(t), 

dr(t) 
dt 

= γx(t), 

where γ is the recovery rate and s(t) + x(t) + r(t) = 1 for all t. 
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SIR Model 

dr(t) −βr(t)/γ ).I Solving these equations, we obtain = γ(1 − r − s(0)edt 

Newman, M.E.J. Networks: An Introduction. Oxford University Press, 2010. © Oxford University Press. 
All rights reserved. This content is excluded from our Creative Commons license. For more information, 
see https://ocw.mit.edu/help/faq-fair-use/. 

I Assume s(0) ≈ 1. The steady state value of r(t) satisfies 

−βr /γr = 1 − e . 

I For β/γ < 1, this has a unique solution at r = 0: there is no epidemic 
(infected individuals recover faster than susceptible ones become infected). 

I The transition between epidemic and non-epidemic regimes happen at the 
point β = γ, called the epidemic threshold or transition. 
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