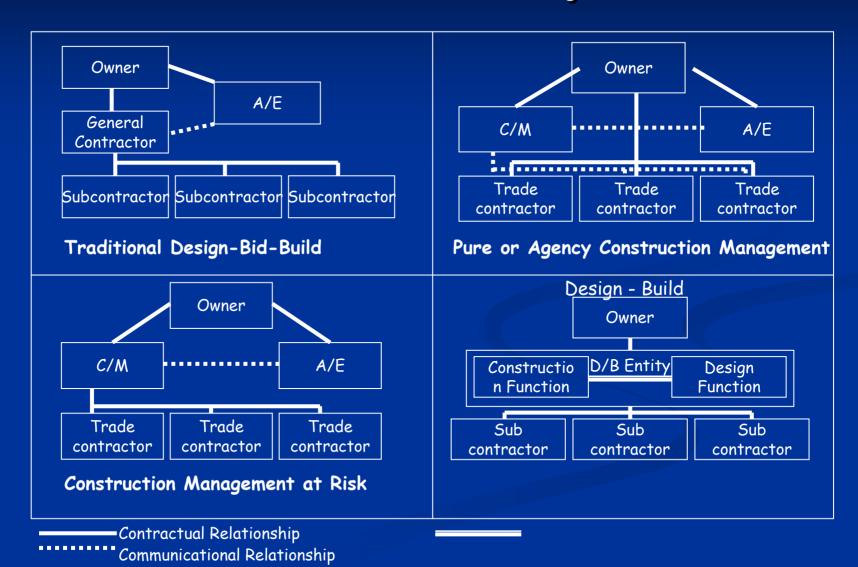
MIT OpenCourseWare http://ocw.mit.edu

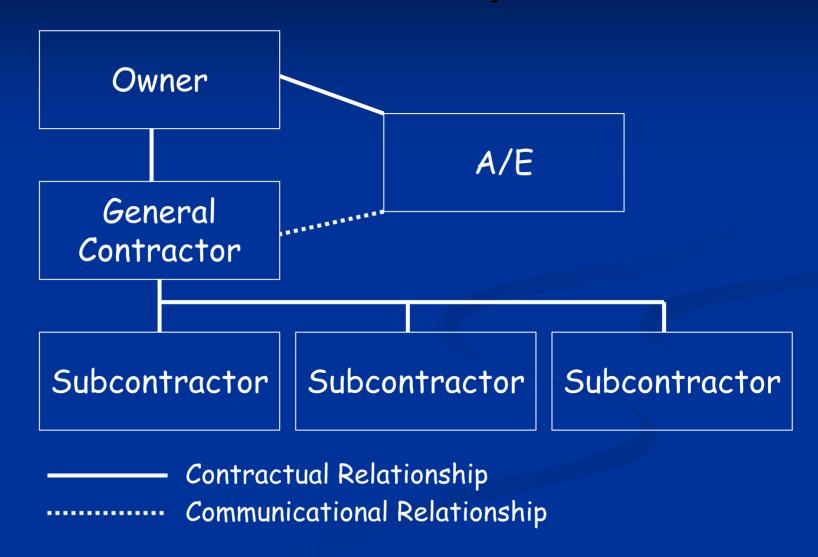
1.040 Project Management Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.


Project Organization

Project Management 1.040/1.401J Spring 2009

Broad Delivery Method Space


Most Common Delivery Methods

A Bit of History (Western World)

- Antiquity, Middle Ages: Design build
- 15th century
 - Greater Distinction between architect & trades
 - Greater attention to design
- 18th century: Century of engineering
 - General contractor in charge of trades, little subcontractors
- Before 1930s: mixture of methods
 - Most design-build, some with alternative financing (94%)
- Post WWII: Emergence of more specialized needs, subcontracting
- 1960s, 1970s: More complicated structures, emergence of CM, constructability needs

Traditional Delivery Method

How To: Traditional

- Hire a design professional in charge of the preparation of the design and contract documents
- Competitive bid or negotiation with contractors after design complete
- Contractor in charge of the delivery of the completed project (may decide to subcontract)
- The contractor is the only one responsible of the execution of the work

Traditional Delivery Method

- Sequential Construction Process
- Collaborative Relationship between A/E
 (Chosen on Qualification Basis) and Owner
- Different Participants' Interests:
 - Owner: Quality and Value Product, Delivery Schedule
 - Contractor: Profit, Construction Time, Site Safety, Relationships, Reputation
 - A/E: Profit, Aesthetics, Relationships, Quality, Recognition
- Lump Bids Commonly Adopted, Resulting in Adversarial Relationship between the Owner and the Contractor

General Contractor Responsibilities

- Still responsible for a large fraction of jobs
 - Particularly public jobs with bidding
- For larger job, GC doesn't do much of work (sometimes <10%)
 - Sometimes verge up against CMs
- Division of responsibility for problems (Different teams)
 - Owner must mediate fights between contractor, designer
- Contractor designs temporary structures
 - Engineer needs to stamp (often *not designer* architect)

Subcontractors

- GC manages most subcontractors
 - Overhead at each level
 - Handles submittals
 - Get bids from subcontractors (bid shopping a danger; no formal guarantee of award of contract)
 - Can be large number of subcontractors
 - Responsible for failure
 - Shop drawings typically produced by subcontractors
 - E.g. engineer consultants
 - Signed off on by architect to say that meets design needs
 - Problem: Things can fall through the cracks

Subcontractors 2

- Motivations
 - No In-house ability
 - GC overstretched
 - GC lacks familiarity with local conditions
 - Need to get warrantees
 - Laws and regulations (assign subs to contractor)
 - Due to specialization, more efficient, cheaper
- Sometimes GC provides equipment to subs
- Tensions (e.g. how quickly, many subs on site)
- Subcontractor management very important for productivity
- Sometime owners or GC put umbrella insurance over
- Required to have bonding by owner

Role of Architect/Engineer

- Typically negotiated contract
 - Recruited on service rather than commodity basis
 - Financial stability, other factors critical
 - Sometimes have design competition
 - Don't want to push too low:
 - Poor design
 - Poor personnel
 - No time for double-check
- Contrast
 - Price of design has small impact on overall price
 - Quality of design has big impact on overall price

Role of Architect/Engineer II

- If estimates off, may be required to redo design at own expense
- Carry errors and omissions experience
- Limited participation in construction process
 - Typically "observes" constructions
 - Avoid official assumption of inspection guarantees
 - Review shop drawings with disclaimers
- Avoids close communication with GC
- Do not want to direct construction methods
 - May put suggestion in contract documents

Advantages

- Well known method (courts, companies)
- Flexibility during design (vs. design-build)
- Cost defined early (when bidding)
- Good contractual protection for the owner
- Open bidding procedure very easy
- Owner not too involved in the construction process
- Fiduciary relationship between A/E & owner
- Good if uncertainty primarily in design

Disadvantages

- Design not reviewed before construction
 - Miss opportunities for major time/cost savings
 - May yield changes due to constructability probs
- Sequential and linear process preventing from overlapping of tasks and money saving
- Few interactions among the participants
- Too rushed to consider multiple alternatives
- Construction can't start until design is complete

Disadvantages II

- Innovative financing difficulty
- Leads to very conservative design strategies
- Difficult for complex projects

How To: Construction Management

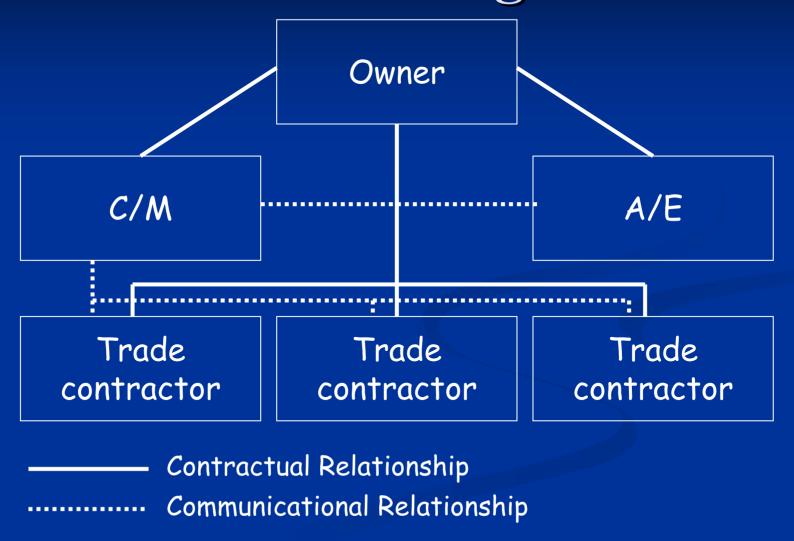
- The Owner hires both a design firm and a construction management firm *before* the beginning of the construction of the project
- Typically CM selected based on quality
- Many variations are possible in the delivery method depending mostly on when the management team is hired and its skills

General Characteristics

- Started in late 1960s
 - World trade center
 - Madison Square Garden
- May recommend A/E
- Check billings
- Specific CM firms tend to be quite sophisticated
 - Warning: Many GCs claim CMs
 - "design CM", "construction CM" "owner CM"

Tasks

- Preconstruction
 - Constructability, value eng, estimation, alternatives, schedule, financing, manage designer, early procurement
- Field supervision
 - QA, Targets met, invoice checking, coordinate work of contractors, M&E, change orders, payments, claims, inspections for design requirements, sometimes safety


CM General Advantages

- Involvement in design allows better
 - Knowledge of price early own
 - Eliminates risks in design before bids
 - Constructability, value engineer. reasoning from start
 - Working construction constraints into design plans
- Allows flexibility in the Schedule (Fast tracking)
- Can select CM based on quality
- Really familiar with plans before price/get bids

CM General Disadvantages

- Don't know total cost when start construction
- Potential conflicts with other parties
 - Designer
 - Subcontractors
 - (Where applicable) GC

Pure ("Agency") Construction Management

Pure Construction Management

- Great Flexibility in the Schedule and for Changes
- Market Competition for subcontracts
- Fiduciary Relationship with the Contractor
- Small Financial Risks of PCM and High Risk of Loss of Reputation
- PCM Generally Paid a Fixed Fee (professional)
- Take over work of designer, GC, owner
- PCM as Facilitator/Mediator in Conflicts

Advantages Pure CM

- Great Flexibility for Changes
- CM more objective, less partial
- Less conflict between owner and CM
- Small Financial Risks of PCM
- Have both
 - Cost competition (for subcontractors)
 - Often 5-8% savings for dealing directly with subs
 - Fiduciary relationship with GC
- One common reference point: The CM
- Owner can get rid of particular subcontractor
- Lessens owner's responsibilities

Disadvantages Pure CM

- Lower incentive for CM to reduce price, time
- Owner alone takes risk on cost of project
 - No guarantee from CM!
- Participants must all be cooperative and well communicating
- High Risk of Loss of Reputation
- All parties must be committed from the beginning

Lessens Owner's Responsibility

- E.g.
 - Project control
 - Job meetings
 - Management meetings
 - Reports (operational and annual)
 - Administrative tasks
 - Budgets
 - Drawing approval
 - Oversight
 - Quality assurance

Central Artery / Big Dig

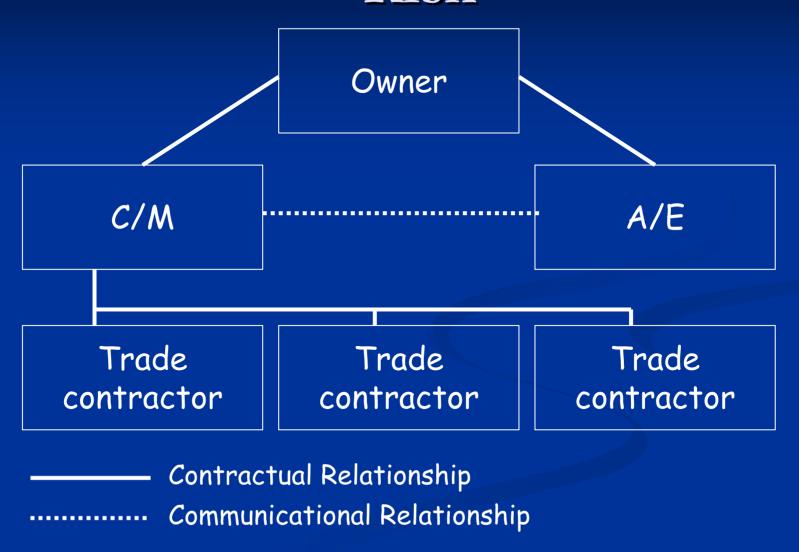
http://www.masspike.com/bigdig/index.html

Central Artery / Big Dig

- Most complex highway project in American history
- The project consist in building 161 lane miles of urban highway - about half underground in a 7.5-mile corridor
- Planning for the Central Artery/Tunnel
 Project began in 1982
- Congress approved funding and the project's basic scope in April 1987

Central Artery / Big Dig

For the Fort point channel:


- Notice to proceed was granted to Modern Continental on March 7 1997
- Expected date of completion: March 13 2002
- Estimated cost: 301,377,284.10 \$
- Modified estimated cost: 403,929,276\$
- Modified date to completion: December 2004
- Engineers + consultants = 100
- Workers on the site = 800
- Priorities = schedule- cost- technical

http://www.masspike.com/bigdig/index.html

Project Organization

- ✓ Project Delivery Systems (most common)
 - ✓ Traditional
 - ✓ Pure Construction Management
 - > Construction Management at risk
 - Design / Build
- Summary

Construction Management at Risk

Construction Management at Risk

- CM usually Guaranteeing Maximum Price:
 GMP to give the owner security that the project will be built within budget
 - Often set at 95% of design
 - This is a big difference from pure CM
 - Fee typically 10-15%
- Reduced Owner Risk
- Risk-wise, ½ between the DBB and the PCM System (VERY similar to GC hired early)
- Contractual Relationships betw. CM&subs
- Performance bonds typical

Advantages CM at Risk

- Reduced Owner's Risk
- CM at risk usually goes with Guaranteed Maximum Price (GMP)
- Contractual Relationships between CM and Trade Contractors

Disadvantages CM at Risk

- The GMP is a defined price for an undefined product
- Bad during design: Design pressure
- Tension
 - CM hired early: more price risk
 - CM hired late: less value during design
- CM is no longer impartial (may argue against changes b/c of own interest)
- Risk of adversarial relationship
- The contract can be hard to enforce

Albert and Barrie Zesiger Sports and Fitness Center

- Groundbreaking: October 2000
- Occupancy: 2002
- Designed by the architectural firms of Roche & Dinkeloo and Sasaki Associates
- Construction: Turner Construction Co.
- Cost: \$45 million
- Olympic-class 50-meter pool
- An 11,000-square-foot fitness center