
1.050 Engineering Mechanics I 

Lecture 28 

Introduction: Energy bounds in linear elasticity (cont’d)
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1.050 – Content overview 
I. Dimensional analysis 

II. Stresses and strength 

III. Deformation and strain 

IV. Elasticity 
… 
Lecture 23:  Applications and examples 
Lecture 24:  Beam elasticity 
Lecture 25: Applications and examples (beam elasticity) 
Lecture 26:  … cont’d and closure 
Lecture 27:  Introduction: Energy bounds in linear elasticity (1D system) 
Lecture 28:  Introduction: Energy bounds in linear elasticity (1D system), cont’d 
Lecture 29:  Generalization to 3D, examples 
… 

V. 	How things fail – and how to avoid it 
Lectures 32 to 37 
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1.050 – Content overview 
I. Dimensional analysis 

1.	 On monsters, mice and mushrooms Lectures 1-3 
2.	 Similarity relations: Important engineering tools Sept. 

II. Stresses and strength 
3.	 Stresses and equilibrium Lectures 4-15 
4.	 Strength models (how to design structures, 

foundations.. against mechanical failure) Sept./Oct. 

III. Deformation and strain 
5.	 How strain gages work? 
6.	 How to measure deformation in a 3D Lectures 16-19 

structure/material? Oct. 

IV. Elasticity 
7.	 Elasticity model – link stresses and deformation Lectures 20-31 
8.	 Variational methods in elasticity Oct./Nov. 

V.  How things fail – and how to avoid it 
9.	 Elastic instabilities 
10.	 Plasticity (permanent deformation) Lectures 32-37 
11.	 Fracture mechanics Dec. 2 

Outline and goals 

Use concept of concept of convexity to derive conditions that 
specify the solutions to elasticity problems 

Obtain two approaches: 

Approach 1: Based on minimizing the potential energy 

Approach 2: Based on minimizing the complementary energy 

Last part: Combine the two approaches: Upper/lower bound 
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Reminder: convexity of a function 
f (x) ∂f | (b − a) ≤ f (b) − f (a)

∂x x=a 

secant 

f (x) 

tangent 

x 
a b 

Total external work 

v r v r 
W d = ξ ⋅ F d +ξ d ⋅ R 

Work done by 
prescribed 
forces 
Displacement 
s unknown 

Work done by 
prescribed 
displacements, 
force unknown 

6Free energy and complementary free energy functions       are convex! ii ψψ , * 

Total internal work 
Ni 

* 
iψ

Complementary free energy 

State equations 

Combining it… 
v r v r !


W d = ξ ⋅ F d +ξ d ⋅ R =ψ +ψ *


∂ψNi = 
∂δ i 

∂ψ * 

ψ i 
δ i = ∂Ni

Free energy 

δ i 

∑δ iNi =ψ *(Ni ) +ψ (δ i ) 
i 7 

* d d− (ψ −ξ 
v 
⋅ R 
r )= 

! 
ψ −ξ 

v 
⋅ F 
r 

Complementary Potential 
energy energy 
=: ε =: εcom pot 

Solution to elasticity problem −εcom = εpot 
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Example system: 1D truss structure 

Rigid boundary 

1 32 

N1 N3N2 

Rigid bar 

δ1 δ2 δ3 

P 

ξ 0 
9 

Minimum potential energy approach 

(1) ξ0
' P = ∑Niδ i 

' 

(2) ξ0 P = ∑Niδ i 

(1)-(2)	 P(ξ0
' −ξ0 ) = ∑Ni (δ i 

' −δ i ) = ∑ 
∂ψ (δ i 

' −δ i ) 
i i ∂δ i 

∂ψNi = 
∂ψ ' 

∂ 
' 
δ i 

Convexity: (δ i −δ i ) ≤ψ (δ i ) −ψ (δ i )∂δ i 

P(ξ0
' −ξ0 ) ≤ψ (δ i 

' ) −ψ (δ i ) 

),()()(),( ' 
0 

' 
pot 

' 
0 

' 
00pot ξδεξδψξδψξδε iiii PP =−≤−= 

Minimum potential energy approach 
Consider two kinematically admissible (K.A.) 
displacement fields 

(1) 

Approximation δ1 
‘ = δ2 

‘ = δ3 ‘ = ξ0 ‘ 
to solution 
(K.A.) 

1 

N1 

(2) 
δ1δ

2 3 

2N 3N

1 δ2 P 
δ3 

δ2 = δ1 + 
2 (ξ0 −δ1 )Actual solution 
3ξ 0 

Prescribed force δ3 = δ1 + 
4 (ξ0 −δ1 )3Unknown 

displacement 10 

Minimum potential energy approach 

εpot (δ i ,ξ0 ) =ψ (δ i ) − Pξ0 ≤ψ (δ i 
' ) − Pξ0

' = εpot (δ i 
' ,ξ0

' ) 

Potential energy of actual solution is always smaller than the solution 
to any other displacement field 

Therefore, the actual solution realizes a minimum of the potential 
energy: 

εpot (δ i ,ξi ) = min εpot (δ i 
' ,ξi 

' )
'δi K.A. 

To find a solution, minimize the potential energy for a selected choice 
of kinematically admissible displacement fields 

12We have not invoked the EQ conditions! 
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Minimum complementary energy approach 
Conditions for statically 
admissible (S.A.) Consider two statically admissible force fields 

N1 + N2 + N3 = R (1) 
3N1 + N2 − N3 = 0 N1

' N2
' N3

' 

Approximation N1
' , N2

' , N3
' 

to solution

Still S.A.


1


R ' 
N1 

(2) 
δ

2 3 

2N 3N

1 δ2 R 
δ3 

N1 N2 N3 N1 = 1/12R 
Actual 

ξ 0 
d N2 = 1/ 3Rsolution 

Prescribed (obtained in 

displacement lecture 20)
 N3 = 7 /12R 
Unknown force R 13 

Minimum complementary energy approach 

(1) ξ0 
d R ' = ∑Ni 

'δ i 

(2) ξ0 
d R = ∑Niδ i 

(1)-(2) ξ0 
d (R ' − R) = ∑δ i (Ni 

' − Ni ) = ∑∂ψ *(Ni ) (Ni 
' − Ni ) 

i ∂Ni 

∂ψ * 
i 

δ i = 
∂N


Convexity: 
∂
∂
ψ 
Ni 

*

(Ni 
' − Ni ) ≤ψ *( 

i

Ni 
' ) −ψ *(Ni )


ξ0 
d (R ' − R) ≤ψ *(Ni 

' ) −ψ *(Ni ) 

),()()(),( '' 
com 

' 
0 

'* 
0 

* 
com RNRNRNRN i 

d 
i 

d 
ii εξψξψε =−≤−= 

Minimum complementary energy approach 

),()()(),( '' 
com 

' 
0 

'* 
0 

* 
com RNRNRNRN i 

d 
i 

d 
ii εξψξψε =−≤−= 
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Complementary energy of actual solution is always smaller than the 
solution to any other displacement field 

Therefore, the actual solution realizes a minimum of the 
complementary energy: 

),(min),( '' 
com

S.A. 
com ' 

RNRN i
N

i 
i 

εε = 

To find a solution, minimize the complementary energy for a selected 
choice of statically admissible force fields 

We have not invoked the kinematics of the problem! 

Combine: Upper/lower bound 

Recall that the solution to elasticity problem −εcom = εpot 

Therefore 
' '−εcom(Ni , R) = max(− εcom(Ni , R )) (change sign)

' Ni S.A. 

ε (δ ,ξ ) = min ε (δ ' ,ξ ' )pot i i 
δi K.A. 

pot i i' 

' '⎧max (− ε (N , R ))⎫ 
' com i 
i 

−εcom(Ni 
' , R ' ) ≤ 

⎪⎪
⎨ 

N S.A.

is equal to 
⎪⎪
⎬ ≤ εpot (δ i 

' ,ξi 
' ) 

' '⎪ min ε (δi ,ξi ) ⎪

Lower bound ⎪⎩ δi 

' K.A. pot ⎪⎭ Upper bound


At the solution to the elasticity problem, the upper and lower bound coincide 
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Approach to approximate/numerical 
solution of elasticity problems 

•	 Minimum potential energy approach:
Select a guess for a displacement field;  the only condition that must be satisfied is 
that it is kinematically admissible. In a numerical solution, this displacement field is
typically a function of some unknown parameters (a1,a2,…) 
– Express the potential energy as a function of the unknown parameters a1,a2,… 
–	 Minimize the potential energy by finding the appropriate set of parameters

(a1,a2,…) for the minimum – generally yields approximate solution 
–	 The actual solution is given by the displacement field that yields a total 

minimum of the potential energy.  Otherwise, an approximate solution is 
obtained 

•	 Minimum complementary energy approach:
Select a guess for a force field;  the only condition that must be satisfied is that it is 
statically admissible. In a numerical solution, this force field is typically a function 
of some unknown parameters (b1,b2,…) 
–	 Express the complementary energy as a function of the unknown parameters

b1,b2,… 
–	 Minimize the complementary energy by finding the appropriate set of 

parameters (b1,b2,…) for the minimum – generally yields approximate solution 
–	 The actual solution is given by the force field that yields a total minimum of the 

complementary energy.  Otherwise, an approximate solution is obtained 
•	 At the elastic solution, the minimum potential energy approach solution and 

the negative of the solution of the minimum complementary energy
approach coincide 
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