
---- ----

Problem Set #8 Solution 1.050 Solid Mechanics

Fall 2004

 Problem 8.1 

A solid aluminum, circular shaft has length 0.35 m and diameter 6 mm. How much does one end rotate relative 
to the other if a torque about the shaft axis of 10 N-m is applied? 

GJWe turn to the stiffness relationship, Mt = ------- φ⋅ in order to determine the relative angle of twist,
Lφ, over the length of the shaft, L. For a solid circular shaft, the moment of inertia, J =  πR4/2. The shear mod-

Eulus G is related to the material’s elastic modulus and Poisson’s ratio by G = -------------------- and the elastic mod­
(

ulus for Aluminum, found in the table on page 212 is 70 E 09 N/m2. 
2 1 + ν) 

Taking Poisson’s ratio as 1/3, G then evaluates to 26 E 09 N/m2 . Putting all of this together gives 
L an angle of rotation φ = ------- ⋅ Mt = 1.06 radians . The maximum shear stress is obtained from

GJ
τ = MtR J .⁄max 

08This evaluates to τ = 2.36×10 N/m2  (This is the change 12 Nov. 04).max 

*** 

What follows is an excursion which considers the possibility of plastic flow in the shaft. 

We see that the maximum shear stress is near or greater than τ
one-half the yield stress (in tension) of the three types of Aluminum 
given in the table in chapter 7. So what will ensue? τy 

GTo proceed, we need a model for the constitutive behavior that 
includes the relationship between shear stress and shear strain beyond the 
elastic range. We assume “elastic - perfectly plastic” behavior, i.e., that 
shown at the right. Beyond the yield point, no further increase in stress is γy 

γ 
required to produce an increase in strain1. 

Consider the shear stress distribution at some instance beyond the 

r= Rr=ri 

τ =Gγ 

Mt, φ

 τ= τy onset of yield. Onset of yield will occur when the shear stress at 
the outer radius of the shaft, r = R, attains the value τy. With some 
additional loading, some additional torque applied, the shear 
stress distribution over the radius might appear as at the left. 

We show the material yielding in the region of the cylinder 
beyond some radius r = ri where the subscript “i” denotes the 
radius at the interface of the elastic and perfectly plastic regions. 
In that region of plastic flow, the shear stress is everywhere equal 
to the shear stress at yield, τy. At  r = ri, the shear stress and strain 
are just τy and γy respectively. The material within the core of the 
shaft, r < ri continues to deform elastically. 

Within this elastic region, we have a linear distribution of both 
stress and strain with r, which can be written: 

r rτ = τ ⋅    and γ = γ ⋅    
y    y  ri ri 

This stress distribution results in a torque, which we obtain from an integration over the area of the 
entire cross-section. We have: ri R 

r
Mt = ∫ r τ⋅ Ad = ∫ r ⋅ 

 τyr
----

i

 ⋅ 2πr rd + ∫ r ⋅ ( )  ⋅ 2πr rdτy

A 0 ri 

where we have taken account of the rotationally symmetry of the problem, carrying out the integration with 
respect to theta, giving the factor 2π. Carrying out the integration with respect to r yields: 

1. If a maximum shear stress criterion applies, the shear stress at yield is one-half the yield stress in a tension test. 
Problem Set #8 Solution 1.050 Solid Mechanics 11/12/04 LL Bucciarelli 



---

---

--- ---

ri 
3 

R
3 ri 

3 3 3 
2R riMt = 2πτy ⋅ ------ + ------ – ------ = ---------πτ ⋅ 1 – --------­y4 3 3 3 4R

3 

This relationship, which holds only after some outer portion of the shaft has gone plastic, shows how the 
torque, Mt, increases as ri decreases - as more and more of the shaft enters the plastic zone. The onset of 
plastic flow happens when ri = R. We label the torque when this happens Myield. 

3
2R 1 π≡ ---------πτ ⋅ 1 ---–

4 
= ---

2 
R

3τyMyield 3 y 

Likewise, we can define the angle of twist at the onset of yield. We have, 
φ  φyieldγ = r ⋅    so at the onset of yield γy = R ⋅ -------------- .    L L 

Now, past the point of the onset of plastic flow at the outermost radius, when the shear stress distribution 
appears as shown in the figure above, at r = ri < R, we have 

φ  γ = r ⋅    so at the interface γy = ri ⋅ ---φ 
      

 φyield 
LL 

These two expressions for γy enable us to write ----
ri = -------------­
R  φ  

We can now eliminate the yield shear stress from our express for the torque beyond onset of yield, replacing 
it with the torque required at the onset of yield and also eliminate the radius to the interface, replacing it with 
the angle of twist at the onset of yield. We have, for φ>= φyield: 

4 ri 
3

4 1  φyield
3 

Mt =   M 1 – --------- =   M 1 – --- --------------   33 yield 4R
3    yield 4  φ  

GJ φWhile for φ<= φyield we have linear elastic behavior. At the interface, Mt = ------- ⋅ φ = Myield ⋅ -------------- .
L φyield 

We plot and see, from the above expression 
for Mt, lettingφget very large, that the shaft 
can sustain a torque of up to four thirds the 
torque for onset of yield. Mt 

Mt= 4/3Myield

Of course the angle of twist increases with­
out limit as we approach this “ultimate” 
torque. Myield 

φyield φ 

Problem 8.2 

What if a solid circular shaft is replaced by a square shaft whose diagonal is equal to the diameter of the orig­
inal circular shaft; How does the torsional stiffness change; For the same torque, how does the maximum shear stress 
change? 

What if the solid circular shaft is replaced by a square shaft whose side is equal to the diameter of the 
original circular shaft; How do these change? 

The figure at the right shows the first case: Here the length of side of 
the inscribed square, which we call 2a, expressed in terms of the diameter of the 
circle is D 2a 

D R2a = ------- or, in terms of the radius, R a = ------­

2 2


The torsional stiffness of the solid circular shaft is πR4/2. That for the square shaft is obtained form 
the textbook, page 232. There we find Mt = Kt ⋅ φ ⁄L where Kt = G k1 ⋅ (2a)3(2b) . In terms of⋅ 
the radius of the circle, putting a (and b) in terms of the radius R, gives 
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R 8k1⋅ -------- -------­Kt = G k1 ⋅ 
 2------

2
-
 4

= G ⋅   ⋅ πR
4

-  2 
A table gives the value for k1, for the case when 2a=2b, as 0.1406. So we obtain Kt = 0.36GJ 

where J is the polar moment of inertia of the solid circular cylinder. The inscribed square shaft has a tor­
sional stiffness of 36% of the solid circular shaft. 

π 

The maximum shear stress is obtained from a second relationship found on page 232: Now we have
 1 

τ = Mt ----------------------------------- where k2 for our case when a= b is found in the table, i.e., k2 = 0.208. max  k2 ⋅ (2a)2(2b) 
  
 1  

= Mt  ------------------------------------------ .Carrying out the same substitutions, we obtain: τ max 8k28k2 8k2 
 ⋅ (πR

3) ⁄ 2
 

The factor ---------- gives ---------- = 0.374 .  π 2π 2 π 2 

This factor is 1.0 for the circular shaft. The maximum shear stress in the inscribed square shaft is 2.67 times 
greater than the maximum shear stress in the solid circular shaft. 

For the square shaft circumscribing the cylinder, we have a = R. We find in this 
case that the square shaft is stiffer in torsion than the circular shaft by a factor of 
1.43. 

And the maximum shear stress in the square shaft is just a bit smaller than the 
maximum shear stress in the circular shaft - a factor of 0.94.

2R 2a 

Problem 8.3 

A thin Aluminum tube, whose wall thickness is 1 mm, carries a torque 80% of the torque required for the onset 
of yield. The radius of the tube is 20 mm. 

Show that an estimation of shear stress, based upon the assumption that it is uniformly distributed over the 
thickness of the tube (and using an estimate of J that is linear in the wall thickness), gives a value within 10% 
of that computed using the full expressions for shear stress and polar moment of inertia. 

πR
4 πRi 

4 
oFor a hollow shaft, the polar moment of inertia J, is given by J = ------------ – ----------- where Ro and Ri are

2 2
the outer and inner radii of the shaft. 

π 4Letting t be the thickness, we have t = Ro - Ri so J is J = --- ⋅ ((Ri + t )4
– Ri ) . Expanding the first

2
term we have, assuming t/R is small 

4π 3
+ ( ) – Ri ) ≅ --- ⋅ (4Ri t) = 2πRi 

3 
t which is the basis for ourJ = --- ⋅ (Ri 

4
+ 4Ri t O  t  

2 4 π 
2 2

approximate solution. 

The shear stress is given by τ = MtR ⁄ J . So the ratio of the two is max o 

MtRτ 2πRi 
3 
tomax ---------------------------- = ⋅ = 0.92

MtRπ 4τ maxapprox o--- ⋅ (R
4

– Ri )o2 
(exact) (approx.) 

Thus, the approximate shear stress is within 10%. 
Fall 2004 11/12/04 LL Bucciarelli 


