
10 

Deflections due to Bending 
------

10.1 The Moment/Curvature Relation 

Just as we took the pure bending construction to be accurate enough to produce 

useful estimates of the normal stress due to bending for loadings that included 

shear, so too we will use the same moment/curvature relationship to produce a dif-

ferential equation for the transverse displacement, v(x) of the beam at every point 

along the neutral axis when the bending moment varies along the beam. 

Mb 

EI 
-

sd 
dφ = 

The moment/curvature relation-

ship itself is this differential equa-

tion. All we need do is express the 

curvature of the deformed neutral 

axis in terms of the transverse dis-

placement. This is a straight for-

ward application of the classical 

calculus as you have seen perhaps 

but may also have forgotten. That’s 

ok. For it indeed can be shown 

that1: 
x 

v(x) φ~ dv/dx 

ρ 

v(x) 

s 

2 
d v  

dφ dx 2 

= -------------------------------
3 
2 

sd ---

dv 2 

1 +  
 xd 

1. Note in this exact relationship, the independent variable is s, the distance along the curved, deformed neutral, 
x axis. 
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There now we have it – once given the bending moment as a function of x all 

we need do is solve this non-linear, second order, ordinary differential equation 

for the transverse displacement v(x). 

But hold on. When was the last time you solved a second order, non linear dif-

ferential equation? Leonhard Euler attacked and resolved this one for some quite 

sophisticated end-loading conditions back in the eighteenth century but we can get 

away more cheaply by making our usual assumption of small displacement and 

rotations. 

dv 2 

That is we take   < 1 which says that the slope of the deflection is small  x d 
with respect to 1.0. Or equivalently that the rotation of the cross section as mea-

sured by φ ≈ (dv/dx) is less than 1.0, one radian. In this we note the dimensionless 

character of the slope. Our moment curvature equation can then be written more 

simply as 

x 2 

2 

d 

d v  Mb x( )  
EI 

-= 

Exercise 10.1 

Show that, for the end loaded beam, of length L, simply supported at the left 
end and at a point L/4 out from there, the tip deflection under the load P is 

PL3 

given by ∆ = (3 16  ) ⋅ ---------⁄ 
EI 

P 

A B C 

L/4 
L 

The first thing we must do is determine the bending moment distribution as a 

function of x. No problem. The system is statically determinate. We first deter-

mine the reactions at A and B from an isolation of the whole. We find R = 3  P,
A 

directed down, and R
B

 = 4P directed up. 

____
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An isolation of a portion to 
Pthe right of the support at B RA = P (L - a)/a

looks very much like Galileo’s 

cantilever. In this region we find B 

a constant shear force equal in 

magnitude to the end load and a a 
Llinearly varying bending 

moment which, at x=L/4 is equal RB = P L/a
to -(3/4)PL. V(x) 

We note that the shear between x= 0 
P (L - a)/aand x < L/4 equals R , the reaction 

A
at the left end, and that the bending 
moment must return to zero. The 

xdiscontinuity in the shear force at B 
allows the discontinuity in slope of 

- PM
b
 at that point. 

Our linear, ordinary, second 
Mb(x) 

order differential equation for 

the deflection of the neutral axis 

becomes, for x < L/4 x 

2 - P(L-a)  x > a 
xd v  Mb( )  3P x < a

dx 2
= --------------- = –------- ⋅ x 

Mb = -Px (L/a -1)
 Mb= - P(L-x)

EI EI 

Integrating this is straight forward. I must be careful, though, not to neglect to 

introduce a constant of integration. I obtain 

3Pdv = – ------- ⋅ (x 2 ⁄ 2) + C1x d EI 
This is the slope of the deflected neutral axis as a function of x, at least within 

the domain 0<x<L/4. Integrating once more produces an expression for the dis-

placement of the neutral axis and, again, a constant of integration. 

3P 
v x( ) = – ------- ⋅ (x 3 ⁄ 6) + C1 ⋅ x + C2EI 

Here then is an expression for the deflected shape of the beam in the domain 

left of the support at B. But what are the constants of integration? We determine 

the constants of integration by evaluating our expression for displacement v(x) 

and/or our expression for the slope dv/dx at points where we are sure of their val-

ues. One such boundary condition is that, at x=0 the displacement is zero, i.e., 

v x( ) = 0 
x 0 = 

Another is that, at the support point B, the displacement must vanish, i.e., 

v x( ) = 0 
x = L ⁄ 4 
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PL2 

These yield C2 = 0 and C1 = ----------------- and we can write, for x < L/4
(32EI ) 

P 
v x( ) = –--------- ⋅ (x 3 – x ⁄ 16)

2EI 
So far so good. We have pinned down the displacement field for the region left 

of the support point at B. Now for the domain L/4 < x  < L . 
The linear, ordinary, second order differential equation for the deflection, 

again obtained from the moment/curvature relation for small deflections and rota-

tions, becomes 

2 
d v  P  –= –------ ⋅ (L x)

EIdx 2 

Integrating this twice we obtain, first an expression for the slope, then another 

for the displacement of the neutral axis. To wit: 

dv P = –------ ⋅ (Lx – x 2 ⁄ 2) + D1x d EI 

and 

P 3 v x( ) = –------ ⋅ [ Lx2 ⁄ 2 – x ⁄ 6] + D1 ⋅ x + D2EI 

Now for some boundary conditions: It appears at first look that we have but 

one condition, namely, at the support point B, the displacement must vanish. Yet 

we have two constants of integration to evaluate! 

The key to resolving our predicament is revealed by the form of the equation 

for the slope; we need to fix the slope at some point in order to evaluate D . We do  
1

this by insisting that the slope of the beam is continuous as we pass over the sup-

port point B. That is, the two slopes, that of v(x) evaluated at the left of B must 

equal that of v(x) evaluated just to the right of B. Our boundary conditions are 

then, for x  > L/4: 

dv PL2 

v x( ) = 0 and    = –------------
x d x = L ⁄ 4   x = L ⁄ 4 16EI 

where the right hand side of this last equation has been obtained by evaluating the slope to 
the left of B at that support point. Sparing you the details, which you are encouraged to 
plough through at your leisure, I - and I hope you - obtain 

PL2 PL3 

⁄ ⁄D1 = (5 32  ) ⋅ --------- and D2 = –(1 96  ) ⋅ ---------
EI EI 
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So, for L/4 < x < L we can write: 

v x
PL3 

⁄ ⁄ 2 ⁄( ) = – ------------ ⋅ [1 – 15  (x L) + 48(x L) – 16(x L)3 ] 96EI 
Setting x=L we obtain for the tip deflection: 

PL3 

v L ⁄( ) = –(3 16  ) ⋅ ---------
EI 

where the negative sign indicates that the tip deflects downward with the load directed 
downward as shown. 

The process and the results obtained above prompt the following observations: 

•	  The results are dimensionally correct. The factor PL3/(EI) has the dimen-
sions of length, that is FL3/[(F/L2)L4] = L. 

•	 We can speak of an equivalent stiffness under the load and write
EI

P = K∆ where K = (16 ⁄ 3) ⋅ ------
L3 

E.g., an aluminum bar with a circular cross section of radius 1.0in, and 
4length 3.0 ft. would have, with I = πr /4 = 0.785 in4, and E = 10x106 psi, 

an equivalent stiffness of  K=898 lb/inch. If it were but one foot in 
length, this value would be increased by a factor of nine. 

•	 This last speaks to the sensitivity of stiffness to length: We say “the stiff-
ness goes as the inverse of the length cubed”. But then, the stiffness is 
even more sensitive to the radius of the shaft: “it goes as the radius to the 
fourth power”. Finally note that changing materials from aluminum to 
steel will increase the stiffness by a factor of three - the ratio of the E’s. 

•	 The process was lengthy. One has to carefully establish an appropriate set 
of boundary conditions and be meticulous in algebraic manipulations2. It’s 
not the differential equation that makes finding the displacement function 
so tedious; it’s, as you can see, the discontinuity in the loading, reflected in 
the necessity of writing out a different expression for the bending moment 
over different domains, and the matching of solutions at the boundaries of 
these regions that makes life difficult. 

Fortunately, others have labored for a century or two cranking out solutions to 

this quite ordinary differential equation. There are reference books that provide 

full coverage of these and other useful formulae for beam deflections and many 

other things. One of the classical works in this regard is Roark and Young, FOR-

MULAS FOR STRESS AND STRAIN, 5th Edition, McGraw-Hill, 1975. We sum-

marize selected results as follow. 

2.	 It took me three passes through the problem to get it right. 
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End-loaded Cantilever 

v(x) 

L 

v(x) 

P For 0<x<L v(x) = [ PL3/(6EI)][3(x/L)2-(x/L)3] 

v|  = PL3/(3EI) at x=L 
max

Couple, End-loaded Cantilever 

v(x) For 0 < x <L v(x) =[ ML2/(2EI)] (x/L)2 

Mb v|  = ML2/(2EI)              at x=L 

L 

v(x) max

Uniformly Loaded Cantilever 

v(x) For 0 <x  <L

L 

v(x) 

wo(x) v(x) = [ w L4/(24EI)] (x/L)2[(x/L)2 - 4(x/L) + 6]
o 

v|  = w L4/(8EI) at x=L 
max o 

Uniformly Loaded Simply-Supported Beam


wo (x) 
v(x) 

L 

v(x) = [w 
0 

L4/(24EI)] (x/L) [1 - 2(x/L)2 + (x/L)3] 

0 < x  <L 

v|
max

 = [5w
o 
L4/(384EI)] =L/2 

For

          at x
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Couple, End-loaded Simply-Supported Beam

Point Load, Simply-Supported Beam

With these few relationships we can construct the deflected shapes of beams

subjected to more complex loadings and different boundary conditions. We do this

by superimposing the solutions to more simple loading cases, as represented, for

example by the cases cited above.

Exercise 10.2

Show that the expression obtained for the tip deflection as a function of end
load in the previous exercise can be obtained by superimposing the dis-
placement fields of two of the cases presented above.

We will consider the beam deflection at the tip to be the sum of two parts: One

part will be the deflection due to the beam acting as if it were cantilevered to a

wall at the support point B, the middle figure below, and a second part due to the

rotation of the beam at this imagined root of the cantilever at B —the figure left

below.

We first determine the rotation of the beam at this point, at the support B. To

do this we must imagine the effect of the load P applied at the tip upon the

deflected shape back within the region 0 < x <L/4. This effect can be represented

as an equivalent force system at B acting internally to the beam. That is, we cut

v(x)

L Mb

For 0  < x  <L

         v|
max

 = [ ML2/(9√3 EI)]              at x=L/√3

          v(x) =  -   [ML2/(6EI)] (x/L) [1 - x2/L2]

(x)

L

b

P
For 0<x<(L-b)

v(x) = [PL3/(6EI)] (b/L) [ -(x/L)3 + (1-b2/L2)(x/L) ]

For (L-b) <x  <L
                      v(x) = [ PL3/(6EI)] (b/L) { (L/b) [(x/L)- (1-b/L)]3- (x/L)3+(1-b2/L2)(x/L)}

v|  = PL3/[9√3 EI)] (b/L)[1-  b2/L2]3/2 at  x=(L/√3)√(1-b2/L2)
max

A B +
BA

rigid

P
P

BA
P
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away the portion of the beam x>L/4 and show an equivalent vertical force acting

downward of magnitude P and a clockwise couple of magnitude P(3L/4) acting at

B.

Now the force P produces no deflection. The couple M produces a rotation

which we will find by evaluating the slope of the displacement distribution for a

couple, end-loaded, simply supported beam. From above we have, letting lower

case l stand in for the span from A to B,

This yields, for the slope, or rotation at the support point B,
dv/dx|

B
 = - Ml/(3EI) .   The couple is M =3PL/4 so the rotation at B is

The deflection at the tip of the beam where the load P is applied due to this

rotation is, for small rotations, assuming this portion rotates as a rigid body, by

where the negative sign indicates that the tip displacement due to this effect is downward.3

We now superimpose upon this displacement field, the displacement of a beam

of length 3L/4, imagined cantilevered at B, that is a displacement field whose

slope is zero at B. We have, for the end loaded cantilever, that the tip displacement

relative to the root is -Pl3
/(3EI) where now the lower case “l” stands in for the

length 3L/4 and we have noted that the load acts downward. With this, the tip

deflection due to this cantilever displacement field is

So the final result, the total deflection at the tip is, as before,
∆ = ∆rigid body + ∆cantilever = - 3PL

3
/(16EI).

3. In this problem M is taken positive in opposition to our usual convention for bending moment. I have left off
the subscript b to avoid confusion.

A B

P

M = P (3L/4)

φB

l=L/4

L

v(x)= -[ Ml2/(6EI)] (x/l) [1-x2/l2]

  so   dv/dx = - [Ml/(6EI)] (1-  3x2/l2)

φB
PL2

16EI
------------–=

∆rigid body 3 4⁄( ) LφB⋅ 3PL3

64EI
-------------–= =

BA P

(3/4)L

∆
cantilever

 = - 9PL3/(64EI)
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Exercise 10.3

Estimate the magnitude of the maxi-
mum bending moment due to the uni-
form loading of the cantilever beam
which is also supported at its end away
from the wall.

Deja vu! We posed this challenge back

in an earlier chapter. There we made an

estimate based upon the maximum bending

moment within a uniformly loaded simply supported beam. We took w
0

L2
/8 as

our estimate. We can do better now.

We use superpositioning. We will consider the tip deflection of a uniformly
loaded cantilever. We then consider the tip deflection of an end loaded cantilever

where the end load is just the reaction force (the unknown reaction force because

the problem is statically indeterminate) at the end. Finally, we then sum the two

and figure out what the unknown reaction force must be in order for the sum to be

zero. This will be relatively quick and painless, to wit:

 For the end-loaded cantilever we obtain ∆
R

 = R L3
/(3EI) where the deflec-

tion is positive up.

For the uniformly loaded cantilever we have ∆wo= -w0L
4/(8EI). The two sum to zero if

and only if

We have resolved a statically indeterminate problem through the consideration

of displacements and insisting on a deformation pattern compatible with the con-

straint at the end – that the displacement there be zero. With this, we can deter-

mine the reactions at the root and sketch the shear force and bending moment

distribution. The results are shown below.

L

wo, force/length

wo (x)+
L

R

∆
R
 = R L3/(3EI)

∆wo= -w0L
4/(8EI)

R 3 8⁄( ) wo L⋅ ⋅=
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We see that there are two positions

where the bending moment must be

inspected to determine whether it attains

a maximum. At the root we have |M
b
| =

(1/8)woL
2

while at x=(5/8)L its magni-

tude is (9/128)woL
2
. The moment thus

has maximum magnitude at the root. It

is there where the stresses due to bend-

ing will be maximum, there where fail-

ure is most likely to occur4.

10.2 Buckling of Beams

Buckling of beams is an example of a failure mode in which relatively large

deflections occur while no member or part of the structure may have experienced

fracture or plastic flow. We speak then of elastic buckling.

Beams are not the only structural elements that may experience elastic buck-

ling. Indeed all structures in theory might buckle if the loading and boundary con-

ditions are of the right sort. The task in the analysis of the possibility of elastic
instability is to try to determine what load levels will bring on buckling.

Not all elastic instability qualifies as failure. In some designs we want buck-

ling to occur. The Tin Man’s oil-can in The Wizard of Oz was designed, as were

all oil cans of this form, so that the bottom, when pushed hard enough, dished in

with a snap, snapped through, and displaced just the right amount of oil out the

long conical nozzle. Other latch mechanisms rely upon snap-through to lock a fas-

tener closed.

But generally, buckling means failure and that failure is often catastrophic. To

see why, we first consider a simple mechanism of little worth in itself as a

mechanical device but valuable to us as an aid to illustrating the fundamental phe-

4. If we compare this result with our previous estimate made back in exercise 3.9, we find the latter was the
same magnitude! But this is by chance; In the simply supported beam the maximum moment occurs at mid-
span. Here it occurs at the left end.

x

x

Mb(x)

wo

5woL/8
3woL/8

  woL2/8

V(x)

(5/8)L

5woL/8

+3woL/8

Mb|max = (9/128)woL2

 woL2/8
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nomenon. The link shown below is to be taken as rigid. It is fastened to ground

through a frictionless pin but a linear, torsional spring of stiffness K
T

resists rota-

tion, any deviation from the vertical. A weight P is suspended from the free end.

We seek all possible static equilibrium

configurations of the system. On the left is

the one we postulate working from the per-

spective of small deflections and rotations;

that is up until now we have always con-
sidered equilibrium with respect to the
undeformed configuration. We can call

this a trivial solution; the bar does not

rotate, the reaction moment of the torsional

spring is zero, the rigid link is in compres-

sion.

The one on the right is more interesting.

But note; we consider equilibrium with
respect to a deformed configuration.

Moment equilibrium requires that M
T
= P∆= PLsinφ

or, assuming a linear, torsional spring ie., M
T
= K

T
φ:

Our challenge is to find values of φ which satisfy this equation for a given load

P. We wish to plot how the load varies with displacement, the latter measured by

either ∆ = Lsinφ or φ itself. That is the traditional problem we have posed to date.

But note, this equation does not solve so easily; it is nonlinear in the displace-

ment variable φ. Now when we enter the land of nonlinear algebraic equations,

we enter a world where strange things can happen. We might, for example,

encounter multi-valued solutions. That is the case here.

One branch of our solution is the trivial solution φ = 0 for all values of P. This

is the vertical axis of the plot below. (We plot the nondimensional load (PL/K
T
)

versus the nondimensional horizontal displacement (∆/L). But there exists another

   P

L
P

KT

φ

∆

M
T
 - P∆ = 0

KT

PL
------- 

  φ⋅ φsin– 0=

φ

(KT/PL)
1

(KT/PL)<1
(KT/PL)>1

y=(KT/PL) φ

y=sinφ

PL/KT

∆/L

1

trivial

non-trivial
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branch, one revealed by the geometric construction at the right. Here we have

plotted the straight line y = (K
T
/PL)φ, for various values of the load parameter,

and the sine function y = sinφ on the same graph.

This shows that, for (K
T
/PL) large, (or P small), there is no nontrivial solution.

But when (K
T
/PL) gets small, (or P grows large), intersections of the straight line

with the sine curve exist and the nonlinear equilibrium equation has nontrivial

solutions for the angular rotation. The transition value from no solutions to some

solutions occurs when the slope of the straight line equals the slope of the sine

function at φ = 0, that is when (K
T
/PL)=1, when

Here is a critical, very special, value if there ever was one. If the load P is less

than K
T
/L, less than the critical value then we say the system is stable. The link

will not deflect. But beyond that all bets are off.

What is the locus of equilibrium states beyond the critical load? We can, for

this simple problem, construct this branch readily. We find nontrivial solutions,

pairs of (PL/K
T
) and φ values that satisfy equilibrium most readily by choosing

values for φ and using the equation to compute the required value for the load

parameter. I have plotted the branch that results above on the left.

You can imagine what will happen to our structure as we approach and exceed

the critical value; up until the critical load any deflections will be insensible, in

fact zero. This assumes the system has no imperfections say in the initial alignment of the link relative to ver-

tical. If the latter existed, the link would show some small angular rotations even below the critical load. Once

past the critical load we see very large deflections for relatively small increments

in the load, and note the rigid bar could swing either to the right or to the left.

Another way to visualize the effect of exceeding the critical load is to imagine

holding the mechanism straight while you take the load up, then, once past the

critical value, say by 20%, let go... and stand back. The system will jump toward

either equilibrium state possible at that load to the left or to the right5.

The critical value is called the buckling load, often the Euler buckling load.

Before turning to the buckling of beams, we make one final and important

observation: If in the equilibrium equation taken with respect to the deformed

configuration, we say that φ, the deviation from the vertical is small, we can

approximate sinφ ≈ φand our equilibrium equation takes the linear, homogeneous
form

5. In reality the system would no doubt bounce around a good bit before returning to static equilibrium.

PL
KT
------- 1=

1
PL
KT
------- 

 – φ⋅ 0=



Deflections due to Bending                                                   275
Now how do the solutions of this compare to what we have previously

obtained? At first glance, not very well. It appears that the only solution is the

trivial one, φ = 0. But look! I can also claim a solution if the bracket out front is

zero. This will happen for a special value, an eigenvalue, namely when

PL/K
T
 = 1.0.

Now that is a significant result for, even though we cannot say very much about

the angular displacement, other than it can be anything at all, we have determined

the critical buckling load without having to solve a nonlinear equation.

We will apply this same procedure in our analysis of the buckling of beams. To

do so we need to develop an equation of equilibrium for a beam subject to a com-

pressive load that includes the possibility of small but finite transverse displace-

ments. We do this by considering again a differential element of a beam but now

allow it to deform before writing equilibrium. The figure below shows the

deformed element acted upon by a compressive load as well as a shear force and

bending moment.

Force equilibrium in the horizontal direction is satisfied identically if we allow

no variation of the axial load6. Force equilibrium of the differential element in the

vertical direction requires

while moment equilibrium about the station x yields

6. The buckling of a vertical column under its own distributed weight would mean that P would vary along the
axis of the beam.

∆x

wo(x)

P

V

P

V

Mb

+ ∆V

x

P

wo(x)

∆x

Mb + ∆Mb

V wo ∆x⋅–– V ∆V+( )+ 0=

Mb wo
∆x( )2

2
-------------⋅– V ∆V+( ) ∆x⋅ Mb ∆Mb+( ) P ∆v⋅+ + +– 0=
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The last term in moment equilibrium is only there because we have taken equi-
librium with respect to the slightly deformed configuration. In the limit as ∆ x
→ 0 we obtain the two differential equations:

It is important to distinguish between the lower case and upper case vee; the

former is the deflection of the neutral axis, the latter the shear force. We obtain a

single equilibrium equation in terms of displacement by first differentiating the

second equation with respect to x, then eliminate the term dV/dx using the first

equation. I obtain

We now phrase the bending moment in terms of displacement using the linear-

ized form of the moment-curvature relation, M
b
/(EI) = d2v/dx2

 and obtain

Along the way I have assumed that the applied distributed load w
0
(x) is zero.

This is no great loss; it will have little influence on the behavior if the end load

approaches the buckling load. It is a straight forward matter to take its effect into

account. In order to focus on the buckling mechanism, we leave it aside.

This is a fourth order, ordinary, linear differential, homogeneous equation for

the transverse displacement of the neutral axis of a beam subject to an end load, P.

It must be supplemented by some boundary conditions on the displacement and its

derivatives. Their expression depends upon the particular problem at hand. They

can take the form of zero displacement or slope at a point, e.g.,

xd
dV

wo x( )=

and

xd

dMb V P
xd

dv⋅+ + 0=

x2

2

d

d Mb P
x2

2

d

d v⋅+ wo x( )–=

EI( )
x4

4

d

d v⋅ P
x2

2

d

d v⋅+ 0=

v 0= or
xd

dv 0=
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They can also involve higher derivatives of v(x) through conditions on the

bending moment at a point along the beam, e.g., a condition on

This last is a restatement of the differential equation for force equilibrium

found above, which, since we increased the order of the system by differentiating

the moment equilibrium equation, now appears as a boundary condition

Exercise 10.4

A beam of Length L, moment of inertia in bending I, and made of a material
with Young's modulus E, is pinned at its left end but tied down at its other
end by a linear spring of stiffness K. The beam is subjected to a compres-
sive end load P.

Show that the Euler buckling load(s) are determined from the equation

Show also that it is possible for the system to go unstable without any elastic

deformation of the beam. That is, it deflects upward (or downward), rotating about

the left end as a rigid bar. Construct a relationship an expression for the stiffness

of the linear spring relative to the stiffness of the beam when this will be the case,

the most likely mode of instability.

We start with the general solution to the differential equation for the deflection

of the neutral axis, that described by the function v(x).

Letting λ2 = (P/EI) this can be written more simply as

In this, c1, c2, c3, and c4 are constants which will be determined from the

boundary conditions. The latter are as follows:

Mb EI( )
x2

2

d

d v⋅=

or on the shear force

V EI( )–
x3

3

d

d v⋅ P
xd

dv
–=

P

v(x)

x

L

EI

P
KL
------- 

  1– PL2 EI( )⁄sin 0=

v x( ) c1= c2x c3
P
EI
------xsin c4

P
EI
------xcos+++

v x( ) c1= c2x c3 λxsin c4 λxcos+++
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At the left end, x=0, the displacement vanishes so v(0) = 0 and since it is

pinned, free to rotate there, the bending moment must also vanish Mb(0) =0 or

d2v/dx2 =0 while at the right end, x=L, the end is free to rotate so the bending

moment must be zero there as well: Mb(L) =0       or   d2v/dx2 =0

The last condition (we need four since there are four constants of integration)

requires drawing an isolation of the end. We see from force equilibrium of the tip

of the beam that

where F is the force in the spring, positive if the end moves upward, and V, the shear force,
is consistent with our convention set out prior to deriving the differential equation for v(x).
Expressing V in terms of the displacement v(x) and its derivatives we can write our fourth
boundary condition as:

d3v/dx3 + (P/EI)dv/dx - (K/EI) v(L) = 0 or d3v/dx3 + λdv/dx - β v(L) = 0

where I have set  β = K/EI.

To apply these to determine the c’s, we need expressions for the derivatives of

v(x), up to third order. We find

dv/dx = c2 + c3λ  cosλx - c4 λ  sinλx

d2v/dx2= - c3λ2 sinλx - c4 λ2cosλx

d3v/dx3= - c3λ3 cosλx + c4 λ3 sinλx
With these, the boundary conditions become

at x= 0.

v(0)=0:                c1                                                     +  c4      = 0

d2v/dx2= 0:   +  c4      = 0

at x = L.

d2v/dx2= 0:                                        (λ2sin λL) c3                  = 0

   ( λ2 - βL )c2             - (sin λL) c3                   = 0

Now these are four, linear homogeneous equations for the four constants, c1-
c4. One solution is that they all be zero. This, if your were to report to your boss

would earn your very early retirement. The trivial solution is not the only one. In

fact there are many more solutions but only for special values for the end load P,

P
V

F=K v(L) v positive up

          V+F=0       or         V +Kv(L) = 0
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(λ). We know from our prior studies of systems of linear algebraic equations that

the only hope we have for finding non zero c's is to have the determinant of the

coefficients of the linear system be zero. The eigenvalues are obtained from this

condition.

Rather than evaluate the determinant, we will proceed by an alternate path, no

less decisive. From the second equation we must have c4 =0. Then, from the first

we must have c1=0.
Turning to the third equation, we might conclude that c3 is zero as well. That

would be a mistake. For we might have sinλL =0.

Now consider the last two as two equations for c2 and c3. The determinant of

the coefficients is

which, when set to zero, can be written

This can be made zero in various ways.

•  We can have

                              (P/KL) = 1

•  or we can set

sin [PL2/(EI)]1/2= 0 which has roots PL2/(EI) = π2, 4π2, 9π2,...

The critical eigenvalue will be the lowest one, the one which gives the lowest

value for the end load P. We see that this depends upon the stiffness of the linear

spring relative to the stiffness of the beam as expressed by EI/L3. For the mode of

instability implied by the equation (P/KL) = 1, we must have

                 P = KL < π2EI/L2  or           K/ (EI/L3) < π2

If this be the case, then the coefficient of c2 in the last of our four equations will be zero.
At the same time, sinλL will not be zero in general so c3 must be zero. The only non-zero
coefficient is c2 and, our general solution to the differential equation is simply

                                                          v(x)= c2x
This particular buckling mode is to be read as a rigid body rotation about the

left end.

If, on the other hand, the inequality goes the other way, then another mode of

instability will be encountered when

                                                      P = π2EI/L2

Now c2 must vanish but c3 can be arbitrary. Our deflected shape is in accord

with

                                                         v(x) = c3 sin λx

λ2 β L⋅–( ) λL( )sin⋅

P
KL
------- 

  1– PL2 EI( )⁄sin 0=
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and is sketched below. Note in this case the linear spring at the end neither extends nor
contracts.

Observe

•  There are still other special, or eigenvalues, which accompany other,
higher, mode shapes.  The next one, corresponding to PL2/EI = 4π2,
would appear as a full sine wave   But since the lower critical mode is the
most probable, you would rarely see this what remains as but a mathemat-
ical possibility.

• If we let K be very large relative to (EI/L3), we approach a beam pinned at
both ends. The buckled beam would appear as in the figure above.

• Conversely, If we let K be very small relative to the beam’s stiffness, we
have a situation much like the system we previously studied namely a
rigid bar pinned at an end but restrained by a torsional spring. In fact, we
get the same buckling load if we set the KT of the torsional spring equal to
KL2.

• We only see the possibility of buckling if we consider equilibrium with
respect to the deformed configuration.

10.3 Matrix Analysis of Frame Structures

We return to the use of the computer as an essential tool for predicting the behav-

ior of structures and develop a method for the analysis of internal stresses, the

deformations, displacements and rotations of structures made up of beams, beam

elements rigidly fixed one to another in some pattern designed to, as is our habit,

to support some externally applied loads. We call structures built up of beam ele-

ments, frames.

Frames support modern skyscrapers; your bicycle is a frame structure; a canti-

levered balcony might be girded by a frame. If the structure’s members are

intended to support the externally applied loads via bending, the structure is a

frame.

P

L

A
v(x) = A sin λx
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As we did with truss structures, structures that

are designed to support the externally applied

loads via tension and compression of its mem-

bers, we use a displacement method. Our final

system of equations to be solved by the machine

will be the equilibrium equations expressed in

terms of displacements.

The figure shows a frame, a building frame,

subject to side loading, say due to wind. These

structural members are not pinned at their joints.

If they were, the frame would collapse; there

would be no resistance to the shearing of one floor relative to another. The struc-

tural members are rigidly fixed to one another at their joints. So the joints can

transmit a bending moment from one element to another.

The figure at the left shows how we might

model the frame as a collection of discrete,

beam elements. The number of elements is

quite arbitrary. Just how many elements is

sufficient will depend upon several factors,

e.g., the spatial variability of the externally

applied loads, the homogeniety of the materi-

als out of which the elements are made, the

desired "accuracy" of the results.

In this model, we represent the structure as an

assemblage of 16 elements, 8 horizontal, two

for each floor, and 8 vertical. At each node

there are three degrees of freedom: a horizon-

tal displacement, a vertical displacement, and

the rotation at the node. This is one more

degree of freedom than appeared at each node of our (two-dimensional) truss

structure. This is because the geometric boundary conditions at the ends, or junc-

tion, of a beam element include the slope as well as the displacement.

With 12 nodes and 3 degrees of freedom per node, our structure has a total of

36 degrees of freedom; there are 36 displacements and rotations to be determined.

We indicate the applied external force components acting at but two of the nodes:

X1, Y1 act at node 1 for example; M1 stands for an applied couple at the same

node, but we do not show the corresponding components of displacement and

rotation.

Equilibium in terms of displacement will require 36 linear, simultaneous equa-

tions to be solved. This presents no problem for our machinery.

We will construct the system of 36 equilibrium equations in terms of displace-

ment by directly evaluating the entries of the whole structure’s stiffness matrix. To

do this, we need to construct the stiffness matrix for each individual beam ele-

ment, then assemble the stiffness matrix for the entire structure by superimposi-

tioning.  What this means will become clear, I hope, in what follows.

X1

Y1

M1

X2

Y2

M2

3

4

5               9

6

7              11

8               12

10



282           Chapter  10
Our approach differs from the way we treated truss structures. There we con-

structed the equilibrium equations by isolating each node of the truss; then wrote

down a set of force-deformation relations for each truss member; then another

matrix equation relating the member deformations to the displacement compo-

nents of the nodes. We then eliminated the member forces in terms of these nodal

displacements in the equilibrium equations to obtain the overall or global stiffness

matrix for the entire truss structure. Only at this point, at the end of our construc-

tion, did we point out that that each column of the stiffness matrix can be inter-

preted as the forces required to maintain equilibrium for a unit displacement

corresponding to that column, all other displacements being held to zero. This is

the way we will proceed from the start , now, constructing first the stiffness matrix

for a horizontal beam element.

The figure at the right shows such an

element. At each of its end nodes, we

allow for an axial, a transverse force

and a couple. These are assumed to be

positive in the directions shown. The

displacement components at each of the

two ends - v1, v2, in the transverse direc-

tion, u1, u2, in the axial direction - and

the slopes at the ends, φ1 and φ2, are also

indicated; all of these are positive in the

directions shown.

The bottom figure shows a possible

deformed state where the displacements

an rotations are shown more clearly

(save u2).

Our first task is to construct the entries in the stiffness matrix for this beam

element.  It will have the form:

A basic feature of matrix multiplication,

of this expression, is the following: each

column may be interpreted as the force

and moment components, the left side of

the equation, that are required to main-

tain a deformed configuration of a unit

displacement corresponding to that col-

umn and zero displacements and rota-

tions otherwise. For example, the entries

in the first column may be interpreted as

F1, S1...Q2 for the displacement

           u1 =1    and v1= φ1 = u2 = v2 =   φ2 = 0

S1, v1 S2, v2

Q1, φ1 Q2 φ2

F1, u1 F2 u2

φ1

u1

v1

v2

φ2

F1

S1

Q1

F2

S2

Q2

u1

v1

φ1

u2

v2

φ2

=
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This turns out to be a particularly

easy column to fill in, for this deforma-

tion state, shown in the figure, only

requires axial forces F1 and F2 to

induce this displacement and maintain

equilibrium.

In fact, if u1 =1, then the force required to produce this uint displacement is

just (AE/L) 1. This meand that F2, in this case, must, in order for equilibrium to

hold, be equal to - (AE/L). No other forces or moments are required or engen-

dered. Hence all other elements of the first column of the stiffness matrix, the

column corresponding to u1, must be zero.

The elements of the fourth col-

umn, the column corresponding to

the displacement u2, are found just

as easily. In this case F2 = (AE/L)

and F1 = - (AE/L) for equilibrium.

Our stiffness matrix now has the

form shown at the right. We con-

tinue considering the second column

and envision the displace configura-

tion

v1 = 1 and u1 = φ1 = u2 = v2 = φ2

=0.

The figure at the left shows the

deformed state. In this it appears we

will require a S1 and a Q1 but no axial

force. Remember, we assume small dis-

placements and rotations so the axial

force does not effect the bending of the

beam element (and, similarly, bending of the beam does not induce any axial

deformation). Only if we allow greater than small displacements and rotations

will an axial load effect bending; this was the case in buckling but we are not

allowing for buckling.

To determine what end force S1, and what end couple, Q1, are required to make

the vertical displacement at the end of a cantilever equal 1 and the slope there zero

- it’s a cantilever because the vertical displacement and rotation at the right end

must be zero -we make use of the known expressions for the tip displacement and

rotation due to an end load and an end couple, then superimpose the two to ensure

a vertical displacement of 1 and rotation of zero.

For a vertical, end load S1, we have from the relationships given on page 182 ,

F1, u1 F2

F1

S1

Q1

F2

S2

Q2

AE
L

-------- ? ? AE
L

--------– ? ?

0 ? ? 0 ? ?

0 ? ? 0 ? ?

AE
L

--------– ? ?
AE
L

-------- ? ?

0 ? ? 0 ? ?

0 ? ? 0 ? ?

u1

v1

φ1

u2

v2

φ2

=

 V1=1

Q1

S1

Q2

S2
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 For an end couple, Q1, we have

If both a vertical force and a couple

act, then, superimposing, we obtain the

following two equations for determining

the vertical displacement and the rotation

at the end of the beam:

Now we set the vertical displacement

equal to unity, v1 = 1, and the slope zero,

φ1 =0, and solve these2 equations for the required end load S1 and the required end

couple Q1. We obtain:

S1 = (12EI/ L3)        and        Q1 = (6EI/L2)

The force and couple at the right end of the element are obtained from equilib-

rium.  Without even drawing a free body diagram (living dangerously) we have:

S2 = - (12EI/ L3)        and        Q2 = (6EI/L2)

Thus the elements of the second col-

umn of the matrix are found and our

stiffness matrix now has the form

shown.

v1
L3

3EI
--------- 

  S1⋅= and
xd

dv

1

φ=
1

L2

2EI
--------- 

  S1⋅–=

v1
L2

2EI
--------- 

 – Q1⋅= and φ1
L

EI
------ 

  Q1⋅=

S1

-φ1

v1

End load.

φ1

-v1

End couple

Q1

v1
L3

3EI
--------- 

  S1⋅=
L2

2EI
--------- 

 – Q1⋅

φ1
L2

2EI
--------- 

  S1⋅–
L

EI
------ 

  Q1⋅+=

 v1=1

Q1

S1

Q2

S2
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The elements of the third

column, corresponding to a

unit rotation φ1 = 1 and all

other displacements and

rotations zero, are found

again from two simulta-

neous equations but now we

find, with v1 = 0 and φ1 = 1:

S1 = (6EI/ L2) and Q1 =
(4EI/L)

Again, the force and

couple at the right end of

the element are obtained

from equilibrium. Now we

have:

S2 = - (6EI/ L2)     and        Q2 = (2EI/L)

With this, our stiffness matrix becomes as shown.

F1

S1

Q1

F2

S2

Q2

AE
L

-------- 0 ? AE
L

--------– ? ?

0
12EI

L
3

------------ ? 0 ? ?

0
6EI

L2
--------- ? 0 ? ?

AE
L

--------– 0 ?
AE
L

-------- ? ?

0
12EI

L3
------------– ? 0 ? ?

0
6EI

L2
--------- ? 0 ? ?

u1

v1

φ1

u2

v2

φ2

=

F1

S1

Q1

F2

S2

Q2

AE
L

-------- 0 0 AE
L

--------– ? ?

0
12EI

L
3

------------
6EI

L2
--------- 0 ? ?

0
6EI

L2
---------

4EI
L

--------- 0 ? ?

AE
L

--------– 0 0
AE
L

-------- ? ?

0
12EI

L3
------------– 6EI

L2
---------– 0 ? ?

0
6EI

L2
---------

2EI
L

--------- 0 ? ?

u1

v1

φ1

u2

v2

φ2

=
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Proceeding in a

similar way at the

right end of the beam

element, we can con-

struct the elements

of the final two col-

umns corresponding

to a unit displace-

ment, v2 =1 (the fifth

colunm) and a unit

rotation at the end,

φ2 = 1, (the sixth col-

umn). Our final

result is:

Exercise 10.5

Construct the stiffness matrix for the
simple frame structure shown.

We employ the same approach as used in

constructing the stiffness matrix for the sin-

gle, horizontal beam element. We consider a

unit displacement of each degree of freedom

— U1, V1, Φ1, U2, V2, and Φ2 — constructing

the corresponding column of the stiffness

matrix of the whole structure in turn. Note how we use capital letters to specify

the displacements and rotations of each node relative to a global coordinate refer-

ence frame.

We start, taking U1 = 1, and consider what

force and moment components are required to

both produce this displacement and ensure

equilibrium at the nodes. Since all other dis-

placement and rotation components are zero,

we draw the deformed configuration at the left.

Refering to the previous figure, we see that we

must have a horizontal force of magnitude AE/

a + 12EI/b3 applied at node #1, and a moment

of magnitude 6EI/b2 to maintain this deformed

configuration. There is no vertical force

required at node #1.

At node #2, we see we must apply, for equilibrium of the horizontal beam ele-

ment, an equal and opposite force to X1= AE/a. No other externally applied forces

are required.

F1

S1

Q1

F2

S2

Q2

AE
L

-------- 0 0
AE
L

---------– 0 0

0
12EI

L
3

------------
6EI

L2
--------- 0

12EI

L3
------------–

6EI

L2
---------

0
6EI

L2
---------

4EI
L

--------- 0
6EI

L2
---------–

2EI
L

---------

AE
L

--------– 0 0
AE
L

-------- 0 0

0
12EI

L3
------------–

6EI

L2
---------– 0

12EI

L
3

------------
6EI

L2
---------–

0
6EI

L2
---------

2EI
L

--------- 0
6EI

L2
---------–

4EI
L

---------

u1

v1

φ1

u2

v2

φ2

=

X1,U1

Φ1
Μ1 Μ2 Φ2

X2,U2

Y1,V1 Y2,V2

a

b

X1= AE/a

a X2= -AE/a

b

12EI/b3

=1U1

Φ1
= 0

= 0V1

6EI/b2
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Thus, the first column of

our stiffness matrix appears as

shown at the right:

Entries in the second col-

umn are obtained by setting

V1 = 1 and all other displace-

ment components zero. The

deformed state looks as below;

The forces and moments required to engender this state and maintain equilib-

rium are obtained from the local stiffness matrix for a single beam element on the

previous page. Thus, the second column of our stiffness matrix can be filled in:

Continuing in this way, next setting F1 = 1, all other displacements zero,

sketching the deformed state, reading off the required force and moment compo-

nents to maintain this deformed state and superimposing corresponding compo-

X1

Y 1

M1

X2

Y 2

M2

AE
a

--------
12EI

b
3

------------+ ? ? ? ? ?

0 ? ? ? ? ?

6EI

b2
--------- ? ? ? ? ?

AE
a

--------– ? ? ? ? ?

0 ? ? ? ? ?

0 ? ? ? ? ?

U1

V 1

Φ1

U2

V 2

Φ2

=

 12EI/a3

a

b

=1V1

Φ1
= 0

= 0Y1

AE/b 6EI/a2

-12EI/a3

6EI/a2

X1

Y 1

M1

X2

Y 2

M2

AE
a

--------
12EI

b
3

------------+ 0 ? ? ? ?

0 AE
b

--------
12EI

a
3

------------+ ? ? ? ?

6EI

b
2

---------
6EI

a
2

--------- ? ? ? ?

AE
a

--------– 0 ? ? ? ?

0
12EI

a
3

------------– ? ? ? ?

0
6EI

a
2

--------- ? ? ? ?

U1

V 1

Φ1

U2

V 2

Φ2

=
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nents at each of the two nodes, produces the stiffness matrix for the whole

structure. We

obtain:

10.4 Energy Methods

Just as we did for Truss Stuctures, so the same perspective can be entertained for

beams.

 A Virtual Force Method for Beams

The intent here is to develop a way of computing the displacements of a (stati-

cally determinate) beam under arbitrary loading and just as arbitrary boundary

conditions without making explicit reference to compatibility condiditions, i.e.

without having to integrate the differential equation for transverse displacements.

The approach mimics that taken in the section on Force Method #1 as applied to

statically determinate truss structures.

We start with the compatibility condition

which relates the curvature, κ = 1/ρ, to

the transverse displacement, v(x),

X1

Y 1

M1

X2

Y 2

M2

AE
a

--------
12EI

b
3

------------+ 0 6EI

b
2

---------
AE
a

---------– 0 0

0 AE
b

--------
12EI

a
3

------------+
6EI

a2
--------- 0

12EI

a3
------------–

6EI

a2
---------

6EI

b
2

---------
6EI

a
2

---------
4EI

b
---------

4EI
a

---------+ 0
6EI

a2
---------–

2EI
a

---------

AE
a

--------– 0 0 AE
a

--------
12EI

b
3

------------+ 0 6EI

b
2

---------

0
12EI

a3
------------–

6EI

a2
---------– 0 AE

b
--------

12EI

a
3

------------+
6EI

a2
---------–

0
6EI

a2
---------

2EI
a

---------
6EI

b
2

---------
6EI

a2
---------– 4EI

a
---------

4EI
b

---------+

U1

V 1

Φ1

U2

V 2

Φ2

=

ρ

v(x)

v(x)

x

κ
x2

2

d

d
v x( )=
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and take a totally unmotivated step, multiplying both side of this equation by a function of

x which can be anything whatsoever, we integrate over the length of the beam:

This arbitrary function bears an asterisk to distinguish it from the actual bending moment
distribution in the structure.

At this point, the function M* could be any function we wish, but now we

manipulate this relationship, integrating the right hand side by parts and so obtain

Integrating by parts once again, we have

then consider the function M*(x) to be a
bending moment distribution, any bend-
ing moment distribution that satisfies the
equilibrium requirement for the beam, i.e.,

So p*(x) is arbitrary, because

M*(x) is quite arbitrary - we can envi-

sion many different applied loads functions.

With this our compatibility relationship pre-multiplied by our arbitrary func-

tion, now read as a bending moment distribution, becomes

κ
0

L

∫ M* x( ) xd⋅ ⋅ M* x( )
x2

2

d

d⋅
0

L

∫ v x( ) xd⋅=

κ
0

L

∫ M* x( ) xd⋅ ⋅ M*

xd
dv⋅

0

L

xd
dv

xd
dM*

xd⋅ ⋅
0

L

∫–=

κ
0

L

∫ M* x( ) xd⋅ ⋅ M*

xd
dv⋅

0

L

xd
d

M*
( ) v⋅

0

L

– v
x2

2

d

d M*

xd⋅ ⋅
0

L

∫+=

v(x)

v(x)

x

x

y V
Mb

p(x)

0                                   L

p(x)

x2

2

d

d
M* x( ) p* x( )=

κ
0

L

∫ M* x( ) xd⋅ ⋅ M*

xd
dv⋅

0

L

xd
d

M*
( ) v⋅

0

L

– p* x( ) v x( ) xd⋅ ⋅
0

L

∫+=
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(Note: the dimensions of the quantity on the left hand side of this last equation

are force times length or work. The dimensions of the integral and boundary

terms on the right hand side must be the same).

Now we choose p*(x) in a special way; we take it to be a unit load at a single

point along the beam, all other loading zero. For example, we take

a unit load in the vertical direction at a distance a along the x axis.

Carrying out the integration in the equation above, we obtain just the displace-

ment at the point of application, at x = a, i.e.,

We can put this last equation in terms of bending moments alone using the

moment/curvature relationship, and obtain:

And that is our special method for determining displacements of a statically

determinate beam. It requires, first, solving equilbrium for the "actual" bending

moment given the "actual" applied loads. We then solve another equilibrium

problem - one in which we apply a unit load at the point where we seek to deter-

mine the displacement and in the direction of the sought after displacement. With

this bending moment distribution determined from equilibrium, we carry out the

integration in this last equation and there we have it.

Note: We can always choose the "starred" loading such that the "boundary

terms" in this last equation all vanish. Some of the four terms will vanish because

of vanishing of the displacement or the slope at a boundary. (The unstarred quan-

tities must satisfy the boundary conditions on the actual problem).Granting this,

we have more simply

We emphasze the difference between the two moment distributions appearing

in this equation; M(x), in plain font, is the actual bending moment distribution in

the beam, given the actual applied loads. M*(x), with the asterisk, on the other

hand, is some originally arbitrary, bending moment distribution which satisfies

equilibrium - an equilibrium solution for the bending moment corresponding to a

unit load in the vertical direction at the point x=a.

p* x( ) 1 x a–( )δ⋅=

v a( ) κ
0

L

∫ M* x a;( ) xd⋅ ⋅ M*

xd
dv⋅

0

L

xd
d

M*
( ) v⋅

0

L

–+=

v a( ) M x( )
EI

-------------

0

L

∫ M* x a;( ) xd⋅ ⋅ M*

xd
dv⋅

0

L

xd
d

M*
( ) v⋅

0

L

–+=

v a( ) M x( )
EI

-------------

0

L

∫ M* x a;( ) xd⋅ ⋅=
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As an example, we consider a cantile-

ver beam subject to a distributed load

p(x), which for now, we allow to be any

function of distance along the span.

We seek the vertical displacement at

x=a.

We determine the bending moment dis-

tribution corresponding to the unit load

at a. This is shown in the figure at the

left, at the bottom of the frame. With

this, our expression for the displace-

ment at a becomes:

Note that:

i) M* at x= L and S* (= dM*/dx) at x=L
are zero so the two boundary terms in

the more general expression for v(a)
vanish.

ii) At the root, v=0 and f (= dv/dx) =0 so the two boundary terms in the more

general expression for v(a) vanish.

iii) Finally, note that since the bending

moment M*(x;a) is zero for x>a, the limit

of integration in the above equation can be

set to a.

We now simplify the example by tak-

ing our distributed load to be a constant,

p(x)= p0.

From the free body diagram at the

right, we find

and so the integral left to evaluate is:

x

x=L

p(x)

p*(x) = 1δ(x-a)

a

v(x)

p*(x) = 1δ(x-a)

a

a

M*(x;a)= 1(a-x)

                       M*(x;a)=0

1a
v a( ) M x( )

EI
-------------

0

a

∫ a x–( ) xd⋅ ⋅=

x

v(x) p(x) = p0

 p0

(L-x)

M(x)

M x( ) p0 L x–( )2⋅ 2⁄=

v a( )
p0 L x–( )2⋅ 2⁄

EI
------------------------------------

0

a

∫ a x–( ) xd⋅ ⋅
p0

2EI
--------- L x–( )2

0

a

∫ a x–( ) xd⋅ ⋅ ⋅= =
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which, upon evaluation yields

Again, the significant thing to note is that we have produced an expression for

the transverse displacement of the beam without confrontation with the differen-

tial equation for displacement! Our method is a force method requiring only the

solution of (moment) equilibrium twice over.

    A Virtual Displacement Method for Beams

The game now is to construct the stiffness matrix for a beam element using dis-

placement and deformation/displacement considerations alone. We consider a

beam element, uniform in cross-section and of length L, whose end displacements

and rotations are presecribed and we are asked to determine the end forces and

moments  required to produce this system of displacements.

In the figure at the right, we show the

beam element, deformed with prescribed

end displacements v1, v2, and prescribed

end rotations φ1, φ2. The task is to find

the end forces, S1, S2 and end moments

Q1, Q2, that will produce this deformed

state and be in equilibrium and we want

to do this without having to consider

equilibrium explicitly.

We start with equilibrium:7

and take a totally unmotivated step, multiplying the first of these equations, the one ensur-
ing force equilbirium in the vertical direction, by some function v*(x) and the second, the
one ensuring moment equilbrium at any point along the element, by another function
φ∗ (x), then integrate the sum of these products over the length of the element.

The functions v*(x) and φ*(x) are quite arbitrary; at this stage in our game they could be
anything whatsoever and still the above would hold true, as long as the shear force and
bending moment vary in accord with the equilibrium requirements. They bear an asterisk

7. Note: our convention for positive shear force and bending moment is given in the figure.

v a( )
p0

24EI
------------ 6a2L2 4a3L a4+–( )⋅=

φ1

   v1

v2

φ2

S1

Q1

Q2

S2

v(x)

x

y V
M

x

xd
dV 0=

xd
dM

V x( )+ 0=

xd
dV

v* x( ) xd⋅ ⋅
0

L

∫ xd
dM

V x( )+ ϕ* x( ) xd⋅ ⋅
0

L

∫+ 0=
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to distinguish them from the actual displacement and rotation at any point along the beam
element.

Now we manipulate this relationship, integrating by parts, noting that:

and write

Now from the figure, we identify the internal shear force and bending moments

acting at the ends with the applied end forces and moments, that is

S1 = - V(0), Q1 = - M(0),   S2 = + V(L),      and Q2 = +M(L).

so we can write

We now restrict our choice of the arbitrary functions v*(x) and φ*(x)8. We

associate the first with a transverse displacement and the second with a rotation

while requiring that there be no transverse shear deformation, i.e, plane cross sec-

tions remain plane and perpendicular to the neutral axis. In this case

so the first term in the integral on the right hand side vanishes, leaving us with the follow-
ing;

8. Actually we have already done so, insisting that they are continuous to the extent that their first derivatives
exist and are integrable, in order to carry through the integration by parts.

xd
dV

v* x( ) xd⋅ ⋅
0

L

∫ v* V
0
L⋅ V x( )

xd
dv*

xd⋅
0

L

∫–=

and

xd
dM ϕ* x( ) xd⋅ ⋅

0

L

∫ ϕ* M
0
L⋅ M x( )

xd
dϕ*

xd⋅
0

L

∫–=

0 v* V
0
L⋅ ϕ* M

0
L⋅ V x( )

xd
dv*

ϕ* x( )– M x( )
xd

dϕ*

+
 
 
 

xd⋅
0

L

∫–+=

v1
* S1⋅ ϕ1

* Q1⋅ v2
* S2⋅ ϕ2

* Q2⋅+ + + V x( )
xd

dv*

ϕ* x( )– M x( )
xd

dϕ*

+
 
 
 

xd⋅
0

L

∫=

xd
dv*

ϕ* x( )– 0=

v1
* S1⋅ φ1

* Q1⋅ v2
* S2⋅ φ2

* Q2⋅+ + + M x( )
x2

2

d

d v*

xd⋅
0

L

∫=
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We can cast the integrand into terms of member deformations alone (and member stiff-
ness, EI), by use of the moment curvature relationship

and write

And that will serve as our special method for determining the external forces

and moments, acting at the ends, given the prescribed displacement field v(x).
The latter must be in accord with equilibrium, our starting point; that is

Thus v(x), our prescribed displacement along the beam element, has the form:

and

With this, our relationship among end forces, end moments, and prescribed

displacements becomes

The coeficients a2 and a3, as well as a0 and a1, can be related to the end displacements and
rotations, v1, φ1, v2 and φ2 but we defer that task for the moment.

Instead, we choose a v*(x) to

give a unit displacement v1* = 1 and

the other end displacement and rota-

tions to be 0. There are many func-

tions that will do the job; we take

M x( ) EI
x2

2

d

d v⋅=

v1
* S1⋅ φ1

* Q1⋅ v2
* S2⋅ φ2

* Q2⋅+ + + EI
x2

2

d

d v

x2

2

d

d v*

⋅ ⋅ xd⋅
0

L

∫=

x2

2

d

d M 0= so from the moment/curvature relation
x4

4

d

d v 0=

v x( ) a0 a1 x⋅ a2 x2⋅ a3 x3⋅+ + +=

x2

2

d

d v 2a2 6a3 x⋅+=

v1
* S1⋅ φ1

* Q1⋅ v2
* S2⋅ φ2

* Q2⋅+ + + EI 2a2 6a3 x⋅+( )
x2

2

d

d v*

⋅ ⋅ xd⋅
0

L

∫=

 v*2 = φ*2 =0

S1

Q1

Q2

S2

v*1 = 1

φ*1 =0

L
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differentiate twice, and carry out the integration to obtain

Now we relate the a’s to the end displacements and rotations.  With

we solve for the a’s and obtain

which then yields the following result for the end force required, S1, for prescribed end
displacements and rotations v1, φ1, v2, and φ2.

The same ploy can be used to

obtain the end moment Q1 required for

prescribed end displacements and

rotations v1, φ1, v2, and φ2. We need

but choose our arbitrary function

v*(x) to give a unit rotation φ1* =
dv*/dx = 1 at the left end, x=0, and

the other end displacements and rota-

tionsto be 0.  There are many functions that will do the job; we take

v* x( ) 1
2
--- 1 πx

L
------cos+ 

 ⋅=

S1 EI 6a3⋅=

v1 v 0( ) a0= =

φ1 xd
dv

0

a1= =

and

v2 v L( ) a0 a1 L⋅ a2 L2⋅ a3 L3⋅+ + += =

φ2 xd
dv

L

a1 2a2 L⋅ 3a3 L2⋅+ += =

a0 v1=

a1 φ1=

a2
3

L2
----- 

  v1–
2
L
--- 

  φ1–
3

L2
----- 

  v2
1
L
--- 

 – φ2+=

a3
2

L3
----- 

  v1⋅ 1

L2
----- 

  φ1⋅ 2

L3
----- 

 – v2⋅ 1

L2
----- 

 + φ2⋅+=

S1
12EI

L3
------------ 

  v1⋅ 6EI

L2
--------- 

  φ1⋅ 12EI

L3
------------ 

 – v2⋅ 6EI

L2
--------- 

 + φ2⋅+=

v*2 = φ*2 =0

S1

Q1

Q2

S2

Lφ*1 = 1

v*1 = 0

1

v* x( ) x 2L x L⁄( )3 L x L⁄( )5+–=
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differentiate twice, and carry out the integration to obtain

which then yields the following result for the end moment required, Q1, for prescribed end
displacements and rotations v1, φ1, v2, and φ2.

In a similar way, expressions for the end force and moment at the right end,

x=L are obtained. Putting this all together produces the stiffness matrix:

Once again we obtain a symmetric matrix; why this should be is not made clear

in taking the path we did. That this will always be so may be deduced from the

boxed equation on a previous page, namely

by choosing our arbitrary function v*(x) to be identical to the prescribed displacement
field, v(x). We obtain: Now a2 and a3 may be expressed in terms

Q1 EI 2a2⋅–=

Q1
6EI

L2
--------- 

  v1⋅ 4EI
L

--------- 
  φ1⋅ 6EI

L2
--------- 

 – v2⋅ 2EI

L2
--------- 

 + φ2⋅+=

S1

Q1

S2

Q2

12EI

L
3

------------
6EI

L2
---------

12EI

L3
------------–

6EI

L2
---------

6EI

L2
---------

4EI
L

---------
6EI

L2
---------–

2EI
L

---------

12EI

L3
------------–

6EI

L2
---------–

12EI

L
3

------------
6EI

L2
---------–

6EI

L2
---------

2EI
L

---------
6EI

L2
---------–

4EI
L

---------

v1

φ1

v2

φ2

=

v1
* S1⋅ φ1

* Q1⋅ v2
* S2⋅ φ2

* Q2⋅+ + + EI
x2

2

d

d v

x2

2

d

d v*

⋅ ⋅ xd⋅
0

L

∫=

v1 S1⋅ φ1 Q1⋅ v2 S2⋅ φ2 Q2⋅+ + + EI 2a2 6a3x+( ) 2a2 6a3x+( )⋅ ⋅ xd⋅
0

L

∫=
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of the prescribed end displacements and rotations via the relationships derived earlier,
which, in matrix form, is

Our basic equation then becomes:

so the symmetry is apparent.

If you carry through the matrix multiplication and the integration with respect

to x you will recover the stiffness matrix for the beam element.

a2

a3

3

L2
-----– 2

L
---–

3

L2
-----

2
L
---

2

L3
-----

1

L2
-----

2

L3
-----–

1

L2
-----

v1

φ1

v2

φ2

G

v1

φ1

v2

φ2

= =

v1 S1⋅ φ1 Q1⋅ v2 S2⋅ φ2 Q2⋅+ + + EI v1 φ1 v2 φ2 G
T 4 12x

12x 36x2
⋅ G

v1

φ1

v2

φ2

xd⋅
0

L

∫=
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Design Exercise 10.1

Your task is to design a classroom demonstration which shows how the tor-

sional stiffness of a structure depends upon material properties and the geometry

of its stuctural elements.

Your professor has proposed the following as a way to illustrate torsional stiff-

ness and, at the same time, the effects of combined loading on a shaft subjected to

bending and torsion. A small number, N, circular rods or tubes are uniformly dis-

tributed around and fastened to two relatively rigid, end plates.

The rods are rigidly fixed to one of the end plates, say the plate at the left

shown above. The other ends of the rods are designed so that they can be either

free to rotate about their axis or not; that is, the right ends can be fixed rigidly to

the plate or they can be left free to rotate about their axis.

If the rods are free to rotate about their axis, then all resistance to rotation of

the entire structure is due to the resistance to bending of the N rods. (Note not all

N rods are shown in the figure). If, on the other hand, they are rigidly fixed at both

ends to the plates, then the torsional stiffness of the overall structure is due to

resistance to torsion of the N rods as well as bending.

A preliminary design of this apparatus is needed. In particular:

• The torsional stiffness of the entire structure due to bending of the rods is
to be of the same order of magnitude as the torsional stiffness of the entire
structure due to torsion of the rods.

• The overall torsional stiffness should be such that the rotation can be made
visible to the naked eye for torques whose application does not require
excess machinery.

• The apparatus should not fail, yield or break during demonstration.

• It should work with rods of two different materials.

• It should work with hollow tubes as well as solid shafts.

• Attention should be paid to how the ends of the rods are to be fastened to
the plates.
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Design Exercise 10.2

Back to the Diving Board

Reconsider the design of a diving board where now you ar to rely on the elas-

ticity of the board to provide the flexibility and dynamic response you desire. The

spring at a will no longer be needed; a roller support will serve instead. In your

design you want to consider the stresses due to bending, the static deflection at the

end of the board, and its dynamic feel.

a

L
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10.5 Problems - Stesses/Deflections, Beams in Bending

10.1 A force P is applied to the end of a

cantilever beam but the end also is restrained

by a moment M so that it can not rotate, i.e.,

the slope of the deflected curve is zero at both
ends of the beam.  The end is free to deflect

vertically a distance ∆. We can write:

P = K ∆
The beam is made from a material of

Young’s modulus E and its (symmetric) cross-

section has bending moment of inertia I.
Develop an expression for the stiffness K in terms of E, I and L, the length of the

beam.

10.2   A cantilever beam is supported

mid-span with a linear spring.  The

stiffness of the spring, k, is given in

terms of the beam’s stiffness as

• Determine the reactions at the wall,
and the way the shear force and bend-
ing moment vary along the beam.

• Compare the tip deflection with that of a cantilever without mid-span sup-
port.

• What if α gets very large? How do things change?

• What if α gets very small? How do things change?

10.3  Determine the reactions at

the three rollers of the redundantly

supported beam which is uniformly

loaded.

Sketch the shear force and bend-

ing moment distribution.

∆

P

L

M

L/2L/2 P

k = α(3EI/L3)

L/2                      L/2

w0
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10.4 A cantilever beam carries a

uniformly distributed load. Using

Matlab, and the derived, beam

element stiffness matrix, (2

elements) determine the

displacements at midspan and at

the free end.  Compare with the

results of engineering beam

analysis provided in the text.

In this, choose a steel beam to support a distributed load of 1000 lb/ft, and let

the length be 20 ft.

Run Frameworks with 2, 3, 4 elements and compare your results.

10.5    The cantilever beam AB

carries a uniformly distributed

load w0 = 31.25 lb/in

Its lenght is L = 40 in and its

cross section has dimensions

b= 1.5 in      & h = 2  in

Take the Elastic Modulus to be

that of Aluminum, E = 10 E

+06

a) Show that the tip deflection,

according to engineering beam

theory is

v(L) = -1.0 in

b) What is the beam deflection at

mid-span?

c) Model the beam using Frameworks, in three ways; with 1, 2 and 4 elements.

“Lump” the distributed load at the nodes in some rational way. Compare the tip

and midspan deflections with that of engineering beam theory.

10.6 For the beam subject to "four point bending",determine the expression for

the mid-span displacement as a function of P, L and a.

Do the same for the

displacement of a point

where the load is applied.

L/2                 L/2

wo

L

A B

w0

1 element

2 elements

4 elements

b

h

2ba a

    L

P P
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10.7   Given that the tip deflection of

a cantilever beam, when loaded

midspan, is linearly dependent upon the

load according to

Pm = km δm where km = 1000 N/

mm

and given that the tip deflection of a

cantilever beam, when loaded at its free
end, is linearly dependent upon the load

according to Pe= ke δe where ke = 300

N/mm and given that the deflection of a

spring when loaded is linearly depen-

dent upon the load according to

Fs = ks δs   where ks  = 500 N/mm

Develop a compatibility condition expressing the tip displacement (with the

spring supporting the end of the beam) in terms of the load at mid-span and the

force in the spring. Expressing the tip displacement in terms of the force in the

spring using the third relationship above, show that

10.8  A beam is pinned at its left

end and supported by a roller at 2/

3 the length as shown.  The beam

carries a uniformly distributed

load, w0  ,  <F/L>

Derive the displacement function

from the integration of the

moment-curvature relationship,

applying the appropriate boundary and matching conditions..

10.9   The roller support at the

left end of the beam of problem

above is replace by a cantilever

support - i.e., its end is now fixed -

and the roller support on the right is

moved out to the end.

Using superpositioning and the

displacement functions given in the

text :

i) Determine the reaction at the

roller.

ii) Sketch the bending moment distribution and determine where the maximum

bending moment occurs and its value in terms of w0L

δS

FsL/2

L

δm

Pm

L

δe

                             Pe

Fs

ks

km 1 ks ke⁄+( )⋅
-------------------------------------- Pm⋅=

2/3 L                          1/3 L

w0

L

w0
x

y V
Mb
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iii) Where is the displacement a maximum?  Express it in terms of w0L4/EI

10.10 A beam, pinned at both ends, is

supported by a wire inclined at 45 degrees as

shown. Both members are two force members

if we neglect the weight of the beam. So it is a

truss. But because the beam is subject to an

axial compressive load, it can buckle and we

must analyze it as a beam-column.

The wire resists the vertical motion of the end
where the weight is applied just as a linear spring if
attached at the end would do; so the buckling prob-
lem is like that of exercise 10.4 in the textbook.

If both the wire and the beam are made of the same material, (with yield stress σy:

i) Determine when the beam would buckle, in terms of the applied end load, W, and the
properties of wire and beam. In this, consider all possible modes.

ii) What relationship among the wire and beam properties would have the wire yield at the
same load, W, at which the beam buckles?

10.11  For small

deflections and

rotations but with

equilibrium taken

with resped to the

deformed

configuration, we

derived the

following

differential

equation for the

transverse

displacement of the end-loaded, “beam-column”

At x = -L/2 and x = +L/2,

L
W

45o

EI

AE

x

v(x)

PP

x= - L/2                                                        x= + L/2

v(x)=?

EI

x4

4

d

d v λ2

x2

2

d

d v⋅+ 0=

where

λ2 P
EI
------=

v 0 ;=
xd

dv 0=
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       The general solution is:

Given the boundary conditions above, set up the eigenvalue problem for deter-

mining (1) the values of L for which you have a non-trivial solution (the eigenval-

ues) and (2) the relative magnitudes of the “c” coeficients which define the

eigenfunctions.

10.12 We want to find an expression

for the off-center displacement, v(b),
of the beam, Experiment #6, 1.105. We

will do this in three ways:

•  By superpositioning the known solu-
tion for the beam carrying but a single
(off-center) load.

• By the “virtual force” method of sec-
tion 10.4 of the text.

• By a finite element computation using Frameworks.

We will take L = 22 in.             a = 8 in.     b = 4 in. in what follows.

By superpositioning the known solution for
the beam carrying but a single (off-center)
load.  For a point load, at distance a from the
left end, we have

For x < a:

For x > a:

Find the displacement at x=b, v(b), for the case in which two loads are symmetrically

applied. Express your results in the form v(b) = (Some number) * PL3/3EI

v x( ) c1= c2x c3 λxsin c4 λxcos+++

x

a

P
L

v
a

P

v(b)                v(L/2)

b

x

a                           (L-a)

P
L

v

v x( ) P L a–( )
6LEI

--------------------- 
  x

3
– L

2
L a–( )2–

 
 
 

x⋅+⋅=

v x( ) P L a–( )
6LEI

--------------------- 
  L

L a–( )
----------------- 

  x a–( )3⋅ x
3

– L
2

L a–( )2–
 
 
 

x⋅+⋅=
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10.13 By the “virtual force”

method of section 10.4 of the

text:

Here we have that

where M*(x) is the bending
moment distribution due to a unit,
virtual force acting at x=b. Mb(x)

is the real bending moment distri-
bution due to the applied loads.

Because of the piecewise nature of
the descriptions of these two func-
tions of x, we must break the inte-
gration up into four parts:

We have, as shown in class (after correction of error):

Also, as shown in class, we non-dimensionalize setting

This gives:

Now alpha and beta are just numbers.  So what is within the curly brackets is itself just a
number; so once again we can express your results in the form v(b) = (Some number) *

PL3/3EI.  Do this and compare with the first formulation.

x

a

P
L

a

P

x

Pa

L-a

a

x a<

Mb x( ) P x⋅=

x L a–>

Mb x( ) P L x–( )⋅=

x

b

x b<

M x( ) 1 b
L
---– 

  x⋅=
x b>

M x( ) b

L
--- L x–( )⋅=

* *

v b( )
Mb x( )

EI
---------------- M x( ) xd⋅ ⋅

x 0=

L

∫= *

1
EI
------ 1 b

L
---– 

  x Px⋅ xd
0

b
∫ b

L
--- L x–( )⋅ Px⋅ xd

b

a
∫ b

L
--- L x–( ) Pa⋅ xd

a

L a–
∫ b

L
--- L x–( )⋅ P(⋅

L a–

L
∫+ + +





⋅

ξ x L⁄= α a L⁄= and β b L⁄=

v b( ) PL
3

EI
---------- 1 β–( ) ξ2 ξd

0

β
∫ β 1 ξ–( ) ξ⋅ ξd

β
α
∫ 1 ξ–( ) α⋅ ξd

α
1 α–
∫ 1 ξ–( )2 ξd

1 α–

1
∫+ ++

 
 
 

⋅=
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10.14 By a finite element

computation using Frameworks.

I suggest you use 6 elements as
shown at the right.

If you choose P, E and I so that the

factor PL3/EI is some power (posi-
tive or negative) of ten, then the
value of v(b) you obtain as output
vertical displacement at node #1
will be easily compared with the
two previous solutions.

x

a

P
L

v
a

P

v(b)                v(L/2)

b

0       1        2        3        4        5      6


