
PROBLEM SET 8 - SOLUTIONS 
 
Comments on Problem Set 8 
 
PROBLEM 1: 
 
- Not many people got a good explanation for part (a). The assumption of straight surface is a good one 
because the difference between velocity heads over the crest and over the trough is small compared with the 
depths at these locations. For this reason, the influence of the change in velocity from crest to trough on the 
surface elevation is small. Note that the velocity heads being small compared to the depth is equivalent to the 
Froude number being much smaller than 1. 
 
- In part (b), since the surface is straight, you can regard it as a “rigid lid” and apply the expression for 
expansion headloss we derived for pipes, i.e., 
 
∆H = (V1-V2)

2/2g = 2.06E-3 m.            (1) 
 
Note that this expression is generally not applicable in open channel flow; this is an exception due to the 
validity of the rigid lid approximation. 
 
- Some groups solved part (b) by saying that, given that the surface is straight and the horizontal difference 
from crest to trough is small, the elevation head difference between crest and trough is negligible. Thus, the 
expansion headloss becomes 
 
∆H =  H1-H2 = (z01+h1+V1

2/(2g))- (z02+h2+V2
2/(2g)) = (V1

2-V2
2)/2g = 2.07E-2 m.       (2) 

 
This reasoning seems correct (and in fact it was given full grade). However, it yields a headloss one order of 
magnitude larger than (1). Therefore, I was puzzled. So I calculated the expansion using a more rigorous 
method. I applied conservation of linear momentum between the crest and the trough, similarly to how we 
derived the expression for the expansion headloss for pipes (Lecture 13). I have attached this more rigorous 
approach in an “addendum” at the end of the solutions. With this approach, I get ∆H =2.08E-3, which is 
similar to the result from (1). 
 
What is the problem with (2)? As you can see in my detailed solution, the expansion needs some length to 
take place. Therefore, the elevation head difference between the sections before and after the expansion, while 
small, is not 0, as assumed in (2), but of comparable order to the velocity head difference. 
 
- To obtain ε in part (e) you can do two things: Apply the relationship n=0.038 ε1/6 or go the long way and 
obtain ε using the Moody diagram (from knowledge of the average bottom shear stress). The first way is 
shorter, but trickier. Since ε = (n/0.038)^6, the value of ε is very sensitive to the value of n. Thus, if you use 
n=0.0242, as I did, you get ε = 6.7 cm. However, if you use n=0.02, you get ε = 2.1 cm !! 
 
PROBLEM 2: 
 
- Please take a careful look to the solution in part (c), since many groups had problems with this part. In the 
specific head vs. depth diagram, we have two different curves for sections 1-1 and 2-2, since their channel 
widths are different (remember that a curve in the specific head vs. depth diagram is valid for a fixed flowrate 
and for a fixed geometry of the channel). The curve for section 2-2 is located to the right of the curve for 
section 1-1 since, for a given h, the narrower section has a larger velocity and thus a larger specific head. 
Energy is conserved from 1 to 2 (short transition of converging flow), and thus the points 1 and 2 have the 



same energy (they are in a vertical line). Point 1 corresponds to subcritical flow (upper branch), while point 2 
corresponds to critical flow. What happens if section 2-2 becomes narrower than the minimum value 
determined in part (b)? In that case, the curve corresponding to section 2-2 will be displaced even more to the 
right, and there would be no point 2 on the curve for section 2-2 with the same energy as point 1. Therefore, it 
would not be possible for the flow of Q=1 m3/s to pass the narrowing under the current conditions. This is 
exactly what happens in Problem 5, part (d).  
 
PROBLEM 3: 
 
- Remember that we defined S0 = sin β (and not tan β). While sin β ≈ tan β for mild slopes, this is not the case 
in part (b) of this problem, where S0 = sin β = 0.77 ≠ 1.20 = tan β. Many people got confused with this. 
 
- To solve part (c), you can apply conservation of momentum, which is the standard way of solving a 
hydraulic jump. Remember, however, that we derived a formula for calculating conjugated depths of an 
unassisted hydraulic jump in a rectangular channel (Lecture 28): 
 
h2/h1 = ½*(-1 + (1+8*Fr1

2 )1/2) 
 
This formula will be in the cheat sheet for test 3. If there is a hydraulic jump in the test (and if it is unassisted 
and happening in a rectangular channel), you will save time if you use this formula, rather than writing the 
momentum equation and solving it by iteration. 
 
PROBLEM 4: 
 
- Some of your answers for part (d) and (e) were unclear or wrong. Please read the solutions. Perhaps the 
clearest way to explain these parts is by using the MP-vs.-h and the E-vs.-h diagram, as done by Joseph, Yun, 
Piotr and Calvin. I have reproduced their answer here: 
 

 
 
The unassisted jump has a larger MP2, equal to MP1, since there is no baffle to provide an extra force to assist 
MP2 in balancing MP1. Since section 2 has subcritical flow, a larger MP2 implies a larger h2, since the 
elevation term (P) is the largest component of MP in subcritical flow. This fact is clearly represented in the 
MP-vs.-h diagram. 



 
Now, since the unassisted jump has a larger h2, and since the energy in subcritical flow is mainly due to 
elevation, E2 will be larger in the unassisted jump and consequently ∆H=E1-E2 will be smaller. This is shown 
in the E-vs.-h diagram. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PROBLEM 5: 
 
- In part (d), the flow is not able to pass the cofferdam. Many of you solved this part by repeating the 
procedure for part (c). Since now your equation for h2 had no real positive solutions, you concluded that the 
flow was not able to pass. This procedure is right. However, I recommend you take a look at the solution for a 
more conceptual (and probably faster) way of solving this part. 
 
- In part (d) the flow is not able to pass the cofferdam. So what happens? Only part of the flow will be able to 
pass; water will accumulate before the cofferdam, thus increasing the value of h1, until the energy at 1 
becomes as large as the critical energy at section 2, which is the minimum energy necessary to pass the 
cofferdam section. 
 
PROBLEM 6: 
 
- Note that, in the E-vs.-h diagram in part (1) (and in the MP-vs.-h diagram in part (2)), the trajectories from A 
to B (or from C to D) are unknown, and we don’t actually expect them to be straight lines from the initial to 
the final point. We just know the position of the initial and the final points; the trajectories in between are 
unknown curves. 
 
 
 
 
 

 
 
 

Reproduced from Joseph, Piotr, Yun 
and Calvin’s solution 





1.09 

2/3 



1.09 m 













 


