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Answer 6.1 

Station 1: 	 A 50-mg/l solution of tracer is injected at the rate of Qi = 100 cm3/s. 

Station 2: 	 Located 100-m downstream of Station 1.   
  Dye concentration, Cdye = 10 µg/l 
  Lindane concentration, CL2 = 0.5 µg/l 

Station 3: 	 Located 200-m downstream of Station 1. 
Dye concentration, Cdye = 8 µg/l 

  Lindane concentration, CL3 = 0.9 µg/l 

If dye is well-mixed and concentration is steady, then the flow at stations 2 and 3 is 

Q2 = QiCi/Cdye = (100 cm3s-1)(50 mgl-1)/(0.01 mgl-1) = 0.50 m3s-1 

Q3 = QiCi/Cdye = (100 cm3s-1)(50 mgl-1)/(0.008 mgl-1) = 0.63 m3s-1 

If no tributaries or sewer outfalls exist between stations 2 and 3, then we expect the 
groundwater inflow between these stations to be 

QGW = Q3 - Q2 = 0.13 m3s-1. 

To find the Lindane concentration in the groundwater we evaluate conservation of mass 
within the river between station 2 and 3. Influxes of Lindane to this control volume are 
at station 2 and from groundwater.  The outflow is at station 3.  Such that 

Q2CL2 + QGWCLGW = Q3CL3 

Solving for the groundwater concentration 

-
CLGW = 

Q3CL3 Q2CL2 = 2.4 µg/l
QGW 



Answer 6.2 

Case 1. The safety doors are closed so that there is no air current in the hall.   
Use time scales to determine if, for the exposure at your office, the release is instantaneous or 

continuous. The distance to your door is dx=10-m.  With no advection (zero current), the 
transport time scale is Tdiffusion= dx2/8D, based on the arrival of the 2σ contour. Thus, Tdiffusion = 
(10-m)2/(8 x 0.05m2s-1) = 250 s. This is much longer than the release time scale (25 s), so the 
concentration observed at your office will appear as if from an instantaneous release.   

Similarly, use a comparison of time-scales to determine if the concentration at your door 
appears as if from a 1-D, 2-D, or 3-D source.  If we assume the release occurs at mid-width, the 
time-scale to mix across the hallway is, tmix,y = (2m)2/(4 x 0.05 m2s-1) = 20 s. For the vertical 
mixing time-scale, note that the spill is at the floor boundary.  A release at the boundary must 
diffuse across twice the distance, as compared to a release at mid-height, so the length-scale must 
be doubled. The time-scale to mix over the hall height is thus, tmix,z= (2x2m)2/(4x0.05m2s-1)= 
80s. Since tdiffusion > > tmix, the concentration at your door appears as if released as a one-
dimensional source, i.e. distributed evenly over y and z. 

Finally, with the closed doors at x = ±20 are no-flux boundaries.  To account for these 
boundaries we put in an infinite set of images located at x = 40n, where n = ±1,±2, etc. The real 
source is located at n=0. The concentration observed at your door then follows, 

M ∞ 
C(x,t) = ∑ (exp -(x + 40n)2 4Dt)),(A 4π Dt n=−∞ 

with x = 10 m. The cross-sectional area of the hallway is A = 4 m2. 
With the doors closed, the hallway is a contained system, and the final concentration is 

simply that established when the mass released in fully mixed over the volume of the hallway.  
We assume that the doors to individual rooms are closed, so that no fumes enter the rooms.  The 
final concentration is then, Cfinal = 1g / (2 x 2 x 40 m3) = 6.25 g/l. 
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The concentration observed at your door (x = 10 m) is plotted above. Note the 
concentration at your door at the diffusion time scale, 250 s, is not negligible.  This time scale is 
based on the arrival of the 2σ contour, not on a specific value of concentration.  The time-scale 
based on cloud size (2σ) is not necessarily a good indicator of exposure risk.  Also, if the 
absolute concentration at 2σ  is below the detection limit, you would not detect it, even though 
you predict it has arrived. The final concentration is reached at around 1600 s, which is shorter 
than tmix,x= LX

2/4D = 8000 s, with LX = 40m (defined in chap. 4). This again emphasizes the 
conservative nature of the standard mixing-time estimator, L2/4D. 

Case 2. Safety doors are open, u= 4 m/s from the spill towards your door. 
The advection time scale is, Tadvection= dx/u = 10-m/4ms-1 = 2.5 s << Tdiffusion and << Trelease. So, 
the transport is dominated by advection, and the chemical arrives at your door before the release 
ends. So, during most of the release the concentration at your door appears as if released from a 
continuous source.  In addition, the mixing time scales derived above still hold, so we can write, 
Tmix,y and Tmix,z > Tadvection, such that the chemical cloud is not mixed over y and z at the door.  
The cloud is thus fully three-dimensional at your door. For simplicity we assign the origin of the 
release to be (x = 0, y = 0, z = 0). Image sources are need to account for the no-flux boundaries 
at y = ± 1-m and z = 0 and 2m.  Consider the four closest images, (y,z)=[ (0,0); (-2,0); (2,0); 
(0,4)]. During most of the release, the concentration at your door will be, 

C(x, y, z) = 

m& 
2exp

 
 - u(y2 + z2 ) 

 + exp
 
- u((y - 2)2 + z2 ) 

 + exp
 
- u((y + 2)2 + z2 )  

 + exp 

 - u(y2 + (z - 4)2 ) 


 
4πDx   4Dx   4Dx   4Dx   4Dx  

   real + image at (y=0,z=0)   image at (y = 2,z = 0) image at (y = -2, z = 0)   image at (y = 0,z = 4) 

The maximum concentration at the door will be at the floor - in line with the source.  So, we 
evaluate the above equation for (x = 10m, y = 0, z = 0).   

m&   u(2m)2   u(4m)2 ) 
Cmax = 

4πDx  
2 + 2exp

 
-

4Dx  


+ exp 

-

4Dx 

 
 

= 

= 
(1g/25s) [2 + 2(0.00034) + 1.2x10-14 ]= 12.7g/l

4π(0.05m2s-1)(10m)

One can see from the values in the last expression that only the image coincident with the real 
source contributes significantly to the solution.  The above concentration is observed at the door 
only during the duration of the release.  More specifically, the concentration is observed starting 
approximately at t = 2.5 s (the advection time scale for the front) and ending at (25 +2.5) = 27.5 
seconds, the duration of the release plus the advection time scale.  The maximum exposure 
concentration at your door is depicted below.  Because of longitudinal diffusion, the front and 
tail of the passing cloud are not sharp, but will have a transition region of length ≈ 4σ , where σ 
is estimated at the advection time-scale, 2.5s.  Thus, the transition region at the front and tail of 
the exposure cloud will 4 √2(0.05m2s-1)(2.5s) = 2 m long, which translates into an transient 



period of (2-m)/(4m/s) = 0.5 s. Note that the final concentration is zero, everything eventually 
flushes out of the hall by the air current. 
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Answer 6.3.   
The stack will run continuously, so use a continuous release solution.  Let H = 57.9-m be the 
stack height. With z = 0 at the ground, the source is at (x=0, y=0, z = H).  One image source 
is needed at (x = 0 , y = 0, z = -H) to account for the no-flux boundary at the ground. 

m&
 
  uy 2 u(z - H )2   uy 2 u(z + H)2 
C(x, y,z) =
 exp  - -  + exp - - 
 4Dyx 4Dz x 
 
 


 


real source image source 

This equation is valid when Pe=Ux/DX >>1. This is true for x >> DX/U = 1-m.  Since the 
house is directly downwind, we let y = 0, x = 1000-m in the above equation.  The rate of 
release is, m = 150,000kg/yr = 4.8 gs-1& . See plot of C(z) below.  The maximum 
concentration at your home will be at the roof, C(z = 10-m) = 0.11 mg/m3 = 0.11 µg/l. 
Finally, note the no-flux boundary is expressed in the profile as ∂C/∂z = 0 at z = 0. 

4 πx Dy Dz 
 
 
 4Dyx 4Dzx 
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Answer 6.4 
The release is described as continuous, and we are told that it rapidly distributes over the 
aquifer depth. No lateral boundaries are indicated.  As a first approximation, we believe 
the concentration field will resemble that from a continuous release in two dimensions, 
(x,y), with conditions uniform in the vertical coordinate, z.  No image sources are needed, 
because boundaries only restrict flux in the z-direction, and the concentration is already 
assumed to be constant in z, such that the no-flux condition, ∂C/∂z = 0, is automatically 
satisfied. However, the source is not a point, but rather is distributed over a 5-m x 5-m 
square. We can treat it as a point if this area is small compared to the extent of the 
plume at the well (see B below), as the concentration observed at the well will then 
appear as if it came from a point source.  We estimate the lateral dimension of the plume 
as B = 4 σy = 4 √(2Ky L/U), where L = 500m is the distance to the well, and the lateral 
dispersivity is Ky = 10-6 m2s-1. Then, B = 126m.  Since 5m << 126m, the concentration at 
the well appears as if it originated from a point source.  Finally, we write the expression 
for brine concentration downstream of the leak.   



C(x, y) = m& /u  uy2 
 
exp -
  ,  
 

Lz 4πK y (x / u)  4K y x 


with Lz = 2m the thickness of the aquifer.  This solution is valid for Pe = Ux/Kx >>1, or x 
>> 10m, so we may apply it at the well located at x = 500m.   
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The maximum concentration at the well, Cmax, is given by the above equation evaluated 
for (x=500m, y=0m). 

(10g/l)(0.1m3/week)(1week/604800s)
= 

This salinity is not detectable by the human palate.  For reference, salt water is 30 ppt. 

The solution above assumes that steady state has been reached at the well.  The time-
required for this to occur depends both on advection and longitudinal dispersion.  The 
advection time-scale, TU = 500m/10-6m/s = 5x108 s ≈ 15 years, defines the arrival of the 
mid-front which will have the concentration Cmax/2. The time interval ∆t between the 

= 0.011 g/l = 0.011 ppt.Cmax 
(10-6 m/s)(2 - m) 4π(10−6 m2 /s)(500m/10-6 m/s) 

arrival of the mid-front and the end of the transient period is approximately ∆t = (2σx)/u, 
where σx is estimated at the time the mid- front arrives at the well, σx = √(2KxL/u). So, 
∆t = (2/10-6ms-1) x √(2x 10-6 m 2 s-1  x 500m / 10-6ms-1) = 6.3 x 107 s = 2 years. The 
concentration observed at the well is sketched below. 
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Finally, note that molecular diffusion, while present, is negligible compared to the lateral 
 
and longitudinal dispersion, and so is not considered in the plume transport calculations. 
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Answer 6.5 
If the tracer is mixed over the channel area, Qr =Qi Ci/Cf = m & / C f  , where m& is the 
tracer injection rate and Cf is the steady-state, far-field concentration.  From the 
observed concentration, and m -1& = 0.01 gs , 

X [m] Cf [gm-3] estimated QR [m3s-1] 
20 0.075 0.13 
40 0.1 0.10 
60 0.1 0.10 

The estimated river flow at the first station is higher than the later two stations.  At 
first this suggests that flow is diverted from the channel between 20 and 40 m. 
However, diversion of flow would not change the concentration, so this is 
implausible.  Instead, we suspect that at x = 20m the tracer has not yet fully mixed 
within the channel, making the observed concentration lower than the steady state 
value.  We then conclude that the flow in the channel is 0.1 m3s-1. We estimate the 
Lagrangian mean velocity, u, from the arrival of the mid-front.  At x = L downstream 
of the injection, the concentration will be 0.5Cf at t = L/u.  Using the 60-m  data, C = 
0.5Cf = 0.05 gm-3 at t = 20 minutes.  Thus, u=(60m)/(1200s) =0.05 ms-1. The mean 
cross-sectional area between x = 0 and x = 60-m is then, A=QR/u = 2m2. 
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The coefficient of longitudinal dispersion, Kx, is estimated from the shape of the front.  
At t0.16 = (L-σx)/u, the concentration will be 0.16Cf. At t0.84 = (L+σx)/u, the 
concentration will be 0.84Cf. Using the concentration at x = L = 60m, 

L 
[m] 

u 
[m/s] 

t0.16 
[min] 

σ0.16=L-ut0.16 
[m] 

t0.84 
[min] 

σ0.84= ut0.84-L 
[m] 
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Assuming σ  = 0 at t = 0 we have two estimates for Kx 

= 
1 ∂σ 2 

= 
1  σ0.84

2  
= 

1  
 (12m)2 

  = 3.0 m2min-1Kx 2 ∂t 2 
 t 0.84 

 2  24min  

1 ∂σ 1  σ 2  1  (9m)  
K =  =  0.16   x   =    = 2.4 m2min-1 

2 ∂t 2  t 0.16  2 17min  

We can average these to find the best estimate, KX = 2.7 m2min-1 
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