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Answer 5.1. 

First, determine if the flow is laminar.  The velocity in the tube is U = Q/A = 0.1 cm/s. 
The diameter of the tube is d = (4/π)A = 1.13 cm.  The Reynolds number is Re = UD/
= (0.1 cm/s)(1.13 cm)/(0.01 cm2 -1) = 11.3 << 2100, the limit for laminar flow.  

Here, Pe = UL/D = (0.1 cm/s)(100 cm)/(10-5 cm 2s-1) = 106. Since Pe >>1 the arrival of 

−1)(1000s) = 0.57 cm. The maximum concentrati
will occur when the center of mass passes that point, i.e. at t = L/U.  So, the maximum 
concentration will be C (x = L, t = L/U = 1000s).  Since the mass mixes instantly acros
the cross-section, and the flow is uniform across the section, the system is effectively o
dimensional.  The concentration resulting from an instantaneous point release is 

M
C( x, t) = exp(-(x - ut)2 4Dt).

Ayz 4πDt

Evaluated at x = L and t = L/U, we have C (x =L, t =L/U) = 

M 
= 

1 g 
= 28.2 g cm-3 

A 4πDL/U 1cm 2 4π(10 −5 cm2s-1 )(100 cm)/(0.1 cm/s) 

s

the dye at L can be estimated by L/U = 1000 s.   At this time the dye patch will have a 
length, 4σ = 4 2Dt = 4 2(10−5 cm 2s
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Answer 5.2.   
a) and b) For all cases the length scale is L = 100 m and the diffusion rate D = 1m2s-1. 

U [m s-1] Diffusion: TD = L2/8D Advection: TU=L/U Pe = UL/D Curve 
0.001 1250 s 100,000 s 0.1 Blue 
0.1 1250 s 1,000 s 10 Green 
1 1250 s 100 s 100 Red 

c) For Fickian diffusion, the peak concentration occurs at the center of mass which 
arrives at the advection time scale, i.e. at time TU the peak concentration in the cloud will 
be located at L. However, the peak concentration observed at L will not necessarily 
occur at TU. This is because the magnitude of the concentration is changing as the cloud 
passes the measurement point.  If the cloud is passing very slowly (Pe << 1), the 
concentration may decline considerably as the cloud is passing, such that the peak 
concentration seen at L will occur before the center of mass arrives.  If the concentration 
changes very little as the cloud passes (advection is faster than diffusion, Pe >>1) the 
peak concentration observed at L will correspond to the advection time scale.  We expect 
this to occur for the Red and possibly the Green systems.   



 

 

To find the concentration we must first determine whether the cloud is three-, two-, or 
one-dimensional as it reaches the measurement position.  This will depend on the time 
required to mix the dye across the channel area, A = 10 m2. If we assume a square cross-
section, then the width and depth of the channel is, Ly = Lz = √10 m.  The mixing time-
scale (see chap 4, eq 24), is ti = Li

2 / 4Di = 10m2/(4 m2s-1) = 2.5 s. For each curve both 
TD and TU >> 2.5 s, so we can safely assume that the dye is well-mixed across the 
channel when it arrives at L. Thus, we can use a one-dimensional solution to estimate the 
concentration observed at L at t = L/U. 

Red Curve: C ( x = L, t = L/U ) = 
M 

= 
1000g 

=

This value is consistent with the peak concentration observed at L. 

For the Green Curve C ( x=L, t=L/U ) = 
1000g 

This value is also consistent with the peak observed concentration. 

For the Blue Curve C ( x=L, t=L/U ) = 
1000g 

This is LESS than the concentration observed at L at t = 4000s (C = 0.25 gm-3). For this 
case the peak concentration observed at L occurs before TU, i.e. before the center of mass 
passes L. This is because the concentration in the cloud is dropping off faster (via 

A 4πDt 10m2 4π(1m2s−1 )(100s) 
2.82 gm-3 . 

10m2 4π(1m2s −1 )(1000s) 
= 0.89 gm-3 

10m2 4π(1m2s −1 )(100,000s) 
= 0.09 gm-3 

diffusion) than the center of mass can travel (via advection), consistent with Pe << 1.  
The spatial distribution, C(x), for this condition is shown below. 



  U = 0.001m/s, D = 1m2/s, Pe = 0.1 
t= 2000 s t = 4000 s t = Tu = 100,000 s 
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d) We are interested in the concentration observed at L = 100m.  In all cases the 
transport time scale for this location is 100 s or more, which is much longer than the 
injection time scale.  For this reason the injection can be assumed to be instantaneous. 



Answer 5.3 

Start by defining the system dynamics using time scales 
We are interested in predicting the concentration at L =1000 m.  Because 1) the channel 
is square; 2) Dy = Dz, and 3) the discharge is at the center of the channel, the time to mix 
across the cross-section is, Tmix = 20m2/(4Dy). All time scales are given in seconds. 

Case U 
[m s-1] 

Dy 
[m2s-1] 

Mixing 
Tmix=20m2/4Dy 

Dx 
[m2s-1] 

Diffusion 
TD=L2/8Dx 

Advection 
TU=L/U 

Pe=LU/Dx 

1 0.5 0.1 50 s 10 12500 s 2000 s 50 
2 0.02 0.01 500 s 1 125000 s 50,000 s 20 

In both cases Tmix << TD and TU, so we can assume that the chemical is uniformly 
distributed in y and z long before it reaches the hatchery.  Thus, we can use a 1-D 
solution to describe the concentration experienced at L = 1000 m.  In addition, the release 
time [100 s] is also very short compared to either transport time scale, which justifies the 
use of an instantaneous release model.  Finally, since concentration is uniform in y and z, 
no images are needed to correct for the no-flux boundaries, i.e. the condition ∂C/∂y = 0 
and ∂C/dz = 0 is met at the boundaries because it is true everywhere after t = Tmix. With 
these approximations we represent the concentration at the hatchery as 

M 
EXP 

 
− 

(L − ut)2 

 
 

.C( x = L, t) = 
A 4  π D t  4 D t x x 

The total mass released is M = (2m3s-1)(0.1g l-1)(100 s)(1000 l m-3) = 20000 g or 20 kg. 
The solution C (x = L, t) is plotted below for case 1 [solid line] and case 2 [dashed line] 
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From the above graph, we describe the following exposure conditions.  For Case 1, the 
high flow conditions, the exposure concentration has a peak of 2 mgl-1 and it exceeds the 
standard for about 1/2 hour. For Case 2, the low flow conditions, the exposure 
concentration has a peak of 1.3 mgl-1 and it exceeds the standard for 13 hours. In both 



cases the exposure is not chronic exposure therefore the application of the standard is 
ambiguous.  However, if it is feasible to shut off the hatchery intake for the duration of 
exposure, this is the safest action to take. 

We could also estimate the peak and duration of exposure as follows.   
Since in both cases Pe >1, the peak arrives at the advection time scale, i.e. 

M
Cmax = C(x=L, t = Tu) = 

A 4  π D TUx 

For Case 1: Cmax = 
20, 000 g 

= 2 gm-3 = 2 mgl-1 

20m2 4 π (10 m2s-1)(2000s) 

For Case 2: Cmax = 
20, 000 g 

= 1.3 gm-3 = 1.3 mgl-1 

20m2 4 π (1 m2s-1)(50,000s) 

At the time the peak passes, the chemical cloud has length, 4σ = 4 x2D TU . If we 
assume that the cloud does not grow as it passes x = L, then this translates into a duration 
of ∆T = 4σ/U. 

−1Case 1: ∆T = 4σ/u = (4 2D  TU ) u = (4  2(10m2s )2000s) (0.5m / s) =1600 s = 27 min. x 

−1Case 2: ∆T = (4 2D  TU ) u = 4( 2(1m2s )50, 000s ) (0.02m / s)= 63,246 s = 17.6 hours. x 



 

 

Answer 5.4 

a) Since the system is unbounded in each coordinate direction (x, y, z), the concentration 
can never become uniform in any direction and a three-dimensional solution will apply.  
Assuming the release occurs at t = 0 s, the trajectory of the chemical cloud's center of 
mass is (x = Ut, y = H, z = 0).  To satisfy the no-flux boundary at y = 0, we must add an 
image source at y = -H.  The center of mass of the image source follows the trajectory 
(x = Ut, y = -H, z = 0). With these conditions, and isotropic diffusivity the concentration 
solution is 

C (x, y, z, t) = 

M   (x − ut)2 + (y − H)2 + z2   (x − ut)2 + (y + H)2 + z2   
exp −  + exp−  

 . 2(4π Dt)
3   4Dt   4Dt   

b) Given the length scale x = L = 500 m, Pe# = (2 ms-1)(500m)/(1m2s-1) = 1000 >> 1. 
This tells us that transport from the smokestack to this position (x = 500 m ) is dominated 
by advection. 

c) The release will appear to be instantaneous if the time scale for release, TR, is much 
shorter than the time scale of transport.  At distances for which Pe# = Ux/D >> 1, the 
transport is dominated by advection.  This is true for x > > D/u = 0.5 m, essentially the 
entire flow domain.  Then, the release will appear to be instantaneous at distances for 
which TU >> TR. Or, x/U >> TR. This is true for x >> (300 s)(2 ms-1) = 600 m. 

d) At x = 2000 m the peak concentrations should arrive at Tu = 2000m/(2ms-1)=1000 s. 
The vertical profile at x = L, t = L/u is shown below for 2000m.  Note that the peak 
concentration occurs at the no-flux boundary and not at the height of the release. 

Vertical Profile of Concentration at L=2000m
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Answer 5.5. 

a. Assume the flow fills the channel uniformly, then U =Q/A = 2.5 x 10-4 ms-1. 
Using L = 75, Pe = 0.19. Alternatively, for L = (75-25) = 50 m, Pe = 0.13.  In either 
case the Peclet number indicates that the system is dominated by diffusion. 

b. According to the Peclet number, transport is dictated by diffusion.  The time-scale 
for the contaminant to reach the harbor can be estimated as the time-scale for 
diffusive transport over the 50-m between the spill and the harbor entrance.  TD = 
(50m)2/(8 x 0.1 m2s-1) = 3125 s ≈ 1hr.  So, I have one hour to put up a contaminant-
absorbing barrier and protect the harbor  

c. In the vertical, tmix=(2 m)2/(4 x 0.1 m2s-1) = 10 s 
   In the lateral, tmix=(10 m)2/(4 x 0.1 m2s-1) = 250 s 

d. Since the mixing time scales in both the lateral and vertical are much shorter than 
the time required for the contaminant to reach the harbor, we can assume the 
contaminant is mixed across the channel area when it reaches x = 75 m.  If 
concentration is uniform (well-mixed) in the lateral and vertical, we can drop these 
two dimensions, and use a one-dimensional solution. 

M   (x - 25 - Ut)2   (x + 25 - Ut)2   
e. C( x, t) = exp-  + exp -   

A 4πDt   4Dt   4Dt  yz 

       real source image source  

The image source is needed to satisfy the no-flux boundary at x = 0.  Since Pe<<1, we 
could also neglect U entirely and still get a good representation of C(x,t). 

C(x, t) = 
M 

 
exp

 
-
(x - 25)2 

 + 
 

exp 
 
-
(x + 25)2 

 


 

A 4πDt   4Dt   4Dt   
yz 

A comparison of the full solution (U = 0.00025 m/s) and the solution that neglects U 
is given below.  One can quickly see that U is indeed negligible, as implied by Pe. 



Concentration at t = 3125 s 
U = 0.00025 m/s 
U = 0 
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f. U and D are assumed to be uniform, i.e. not functions of (x, y, z), but in fact the no-
slip condition at the channel boundaries will make U = f(y,z). 
We assume that D is isotropic.  In fact, turbulent diffusion in the longtudinal direction 
will be much more rapid than in the vertical or horizontal.  This is discussed further in 
Chapter 9. We neglect losses to the atmosphere, when in fact the gasoline is volatile. 
We assume that no gasoline absorbs to the sediment. We assume that the flow and 
thus velocity are not functions of time. 




