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Solution 1 

From Fick’s Law (Eq 3 in Chap 1) 

∂C C (z = 10 cm) − C (z = 0 cm) 
qz = −DA 

∂Z 
≈ −DA 

(10 − 0) cm � � � � 0 − 100 gcm−3 

= − 10−5 cm 2 s−1 1 cm 2
10 cm 

= +10−4 g/s 

“+” z-direction is upward 

Solution 2 

Temperature: 
As temperature of the fluid increases, the water molecules move about more vigorously. The 

collision of water molecules with molecules of the diffusing species causes the species molecules to 

move about as well. As the strength and number of collisions increase with temperature, the mean 

distance (Δx) moved per time (Δt) increases. Therefore, based on the random walk model, we 

expect D to increase with temperature. D ∼ Δx2 
.Δt 

Molecule size: 
Bigger molecules will be less easily moved by collisions from surrounding water molecules, 

especially if species molecule is much bigger than water molecule, and ∴ will experience multiple, 
simultaneous, uncoordinated collisions. Thus, the mean step size, Δx, per time is smaller for bigger 
molecules. And we expect D ∼ Δx2 

to be smaller too. Δt 

Solution 3 

Question 1 

t(day) t(sec) Cmax 0.6 Cmax σ(cm) 

1 

4 

86400 

345600 

13.5 

6.8 

8.1 

4.1 

3.0 

6.0 

Assuming you released the dye in a very thin horizontal layer, such that initially σ = 0, then: 

σ = 
√

2Dt D = 
σ2 

⇒ 
2t 

Thus, our two estimates of D are: 

D1 = (3.0 cm)2 /2 (86400 s) = 5.2 × 10−5 cm 2 s−1 . 

1 



� � 

� � � � 

and


D2 = (6.0 cm)2 /2 (345600 s) = 5.2 × 10−5 cm 2 s−1 . 

Therefore, the estimated diffusion coefficient of the dye is 5.2 × 10−5 cm2s−1 . 

Question 2 

We must consider the boundaries of the tank when the cloud width (4σ) is 40 cm. That is, when: 

4 (2Dt)1/2 = 40 cm 

(i.e.	 when Dt = 50 cm2) 

Using our value of D above, the boundaries of the tank become important when 

t = 50 cm 2/5.2 × 10−5 cm 2 s−1 = 9.6 × 105 s = 11.1 days. 

Solution 4 

(i)	 Air


The concentration we are interested in is given by:


C 
= 1 ppm C =

1.23 kgm−3 

= 1.23 × 10−9 gcm−3 

ρair 
⇒ 

106


The normal distribution of concentration is:


M x2 

C = 
A
√

4πDt
exp −

4Dt 

Therefore, for a mass fraction of 1 ppm,


1.23 × 10−9 =
9.599 √× 

t 

10−4 

exp − 
4.464 

t 
× 103 

⇒ exp 
4.464 

t 
× 103 

=
7.804 √× 

t 

104 

Solving this equation by trial and error gives us the solution that C = 1 ppm at x = 50 cm 

when t = 423 s. 

(ii)	 Water 

Following the same solution method, 

C	 1000 kgm−3 

ρwater 
= 1 ppm ⇒ C = 

106 = 1.00 × 10−6 gcm−3 
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Therefore, for a mass fraction of 1 ppm,


1.00×10−6 gcm−3 = � �� 
0.1 g 

exp 
(50 cm)2 

2
π (5 cm)2 4π (1.71 × 10−5 cm2s−1) t 

−
4 (1.71 × 10−5 cm s−1) t 

With t in seconds, the dimensions cancel, and we are left with: 

1.00 × 10−6 =
8.686 √× 

t 

10−2 

exp − 
3.655 

t 
× 107 

⇒ exp 
3.655 

t 
× 107 

=
8.686 √× 

t 

104 

Solving this equation by trial and error gives us the solution that C = 1 ppm at x = 50 cm 

when t = 1.12 × 107 s(= 130 days), much longer than when the fluid is air. 

Solution 5 

A) To answer this question, you must define the edge of the diffusing patch of fuel. By convention, 
this is typically taken as ±2σ from the center of the patch. By this definition, the edge of the 

fuel patch will reach your house 

when 2σ = 50 m 

or 2
√

2Dt = 50 m. 

Solving for t = 31, 250 s = 8.7 hr. 

B) At the above time (31, 250 s), the concentration at your house is, from EQ. 7, 

C(x = −2σ, t = 31250 s) = 
M 

exp 
(−2σ)2


A
√

4πDt
−

2σ2


= � 
1 kg 

exp {−2}
(5 m 1 m) 4π(0.01 m2/s)(31250 s)· 

= 4.3 × 10−4 kgm−3 = 0.43 gm−3 

∂
C) The maximum concentration at x = −50 m can be found by setting [C(x = −50 m, t)] = 0. 

∂t 
As this is a difficult derivative, a graphical solution is easier and more instructive. 
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