
1.124 Quiz 1 Thursday October 8, 1998
Time: 1 hour 15 minutes
Answer all questions. All questions carry equal marks.

Question 1. The following code is to be built and run as follows:

Compile as g++ -c Point.C
g++ -c myprog.C

Link as g++ -o myprog myprog.o Point.o
Run as myprog

Would you expect to see
(a) a compile-time error?
(b) a link-time error?
(c) a run-time error?
(d) none of the above errors.

Explain briefly.

Point.h

class Point {
 private:

 int x, y;
 public:

 Point() {}

 void set_coords(int x, int y);

};

Point.C

#include "Point.h"

void Point::set_coords(int x, int y) {
 // Assume that this sets the private data.
}

myprog.C

#include "Point.h"
extern Point a;

int main() {
 a.set_coords(2,3);
 return 0;
}

a is not defined

Answer:

A link-time error.

The global object
anywhere.

Question 2. Fill in the body of the member function, set_coords, so that it properly sets
the private member data in class Point.

}

Answer:

void Point::set_coords(int x, int y) {

 this->x = x; // or Point::x = x;
 this->y = y; // or Point::y = y;

Question 3. Write a member function, access_x, that can be used either to set or to get
the value of the private member, x. Your function should work with the following code:

class Point {
 private:

 int x, y;

 public:

 return x;
}

 Point() {}

Answer:

int& access_x() {

};

int main() {
 Point a;
 int i;

 a.access_x() = 5;
 i = a.access_x();
 return 0;
}

Question 4. Is the following class declaration valid? Explain briefly.

class Point {
 private:

 int x, y;

 Point a;

 public:
 Point() {}
};

No.

Point

Answer:

A class cannot contain a member of the same data type. In this example, the
compiler has no way to determine the size of a object.

Question 5. Examine the following code carefully and explain the exact sequence of
constructor calls.

class Point {
 private:

 int x, y;

 public:

 Point() { x = y = 0; } // Constructor #1

 Point(int ix, int iy) { x = ix; y = iy; } // Constructor #2

 Point(const Point& p) { x = p.x; y = p.y; } // Constructor #3

 ~Point() {}

};

Point foo(Point p) {
 static Point c(p);
 return c;
}

int main() {
 Point a(2,3);
 Point b;

 b = foo(a);

 a = foo(b);

 return 0;

}

Answer:
Constructor # Reason
2
 1
 3
 3
 3
 3
 3

 Definition of object a.
 Definition of object b.

.
 Definition of object c.

.
.

.

 Pass by value into foo()

 Return by value from foo()
 Pass by value into foo()
 Return by value from foo()

Question 6. Examine the following code carefully and draw a diagram to illustrate the
data structures that it creates. Be sure to indicate all data types on your diagram.

class Point {
 private:

 int x, y;

 public:

 Point() { x = y = 0; }

 Point(int ix, int iy) { x = ix; y = iy; }

};

int main() {
 Point **p;
 p = new Point *;
 *p = new Point[3];
 for (int i = 0; i < 3; i++) {
 (*p)[i] = Point(i, 0);

 }

 return 0;

}

Question 7. In the following code, circle the statements that will produce compilation
errors. Explain your reasoning.

class Point {

 p

 Point **

 Point *

 Point

 Point

 Point

Answer:

private:

 public:

 x = a; y = b;
}

};

delete p;
 return 0;
}

non-static members. Static member

the class definition.

 int x, y;
 static int i;

 Point() {}
 static void set_data(int a, int b, int c) {

i = c;

int Point::i = 0;

int main() {
 Point::i++;
 Point *p = new Point;
 p->set_data(2,3,1);

Answer:

There are two errors.

(1) Static member functions cannot access

functions can be invoked even if no
objects exist, whereas non-static
members belong to objects.

(2) Private data is not accessible outside

Question 8. Identify and explain the errors, if any, in the following code.

#include <iostream.h>

class Point {
 private:

 const int x, y;

 public:

 Point(int ix = 0, int iy = 0) : x(ix), y(iy) { }

 void print() const { cout << "(" << x << ", " << y << ")" << endl; }

};

int main() {
 const int i = 0;
 const Point a;
 Point * const p = new Point(2,3);
 const Point& b = a;

 b.print();

 p->print();

 delete p;
 return 0;
}

Answer:

There are no errors.

Part II

In the code below answer the following questions:
#include <iostream.h>

class Point { // Line 1

 private:

int x, y;

 public:

 Point(){x=0;y=0;}

 Point(int a, int b){x=a;y=b;}

 ~Point(){};

 ??? operator+(Point&);

 ??? operator<<(???);

 ??? operator[](???);

};

Question 9. Give the body of the code i.e. the definition, for operator+ including the
return type so that the code adds together two Point objects so that the following code
will work.
main(){

 Point a(2,3),b(3,3);

 Point c = a + b;

}

}

Point Point::operator +(const Point& p)const{
return Point(x+p.x,y+p.y);

Question 10 What changes would
you make to make the following
code work. Make any assumptions
you need to about how the code
should interpret the meaning of
the statements below.

main(){

 Point a(2,3),b(3,3);

 Point c = b + 7;

}

Point(int a, int b=0):x(a),y(b){};

Question 11 Give the body of
the code to overload operator[]
which should allow the
following code to work
main(){
 Point a(2,3);

 a[0] = 4;

 a[1] = 2*a[0];

}

}

}

int& Point::operator [](int i){
if(i == 0) return x;
else if(i == 1) return y;
else {

cout << "error in index for Point object"<< endl;

Question 12 Give the body of
the code to overload the
output operator<< for the
Point object so that the
following code will work.
#include <iostream.h>
main(){
 Point a(2,3), b(3,3);

 cout << a << b;

}

return o;
}

Answer:

ostream& operator<<(ostream& o, Point& p){
 o << "x = "<< p[0] <<", y = "<< p[1] << endl;

For the code below answer the following questions:

class Shape{
 private:

 Point center;
 public:

 Shape(const Point&);
 virtual ~Shape();
 void set_center(const Point&);
 Point get_center(){return center;}
 virtual void print(){cout << "Center at "<<center[0]<<","<<center[1]<< endl;};
};

class Circle:public Shape
{

 private:
int radius;

 public:
Circle();

 Circle(int,int, int)?????

 Circle(Point&,int)?????

 Circle(Circle&) ????

 ~Circle();

 void print(){};

};

Question 13 How many bytes of data are
needed for the variables in a Circle
object?

There are 3 int objects
which take 12 bytes.

Question 14 Are there any inline
functions in class Shape? If so name
them.

Question 15 Write down all the
functions in class Circle that can access
center in the
private part of Shape.

Question 16 Write the definition of the
copy constructor for class Circle.

Question 17 How would we make the class
Shape an abstract class? What does an
abstract class mean?

There are no functions
that can access the
private part of Shape.

get_center() is an inline function
print() is NOT because its virtual.

Circle(Circle& c){radius =
c.radius;set_center(c.get_center());}

Set any function = 0 eg
func() = 0;

Question 18 Will the following code compile
without errors?
main(){
 int x=5.0,y=6.0;
 int radius = 2;
 Shape* a;
 a = new Circle(x, y, radius);
 Circle b(*a);
 a = &b;
 a->print();
 delete a;
};

Question 19 What would the code above
print out if print() was NOT a virtual
function in class Shape?

Question 20 How many bytes of memory
would be released on line 10 if the
destructors were NOT virtual.

main(){
 int x=5.0,y=6.0;
 int radius = 2;
 Shape* a;
 a = new Circle(x, y, radius);
 Circle b(*a);
 // a=&b; this line taken out
 a->print();
 delete a;
};

It will compile without errors.

Center at 5,6

Center at 5,6 with radius 2
If it were a virtual function it would print

8 Bytes since it would just destroy
the Shape part of the object

File point.h
#include <iostream.h>
class Point { // Line 1
 private:
 int x, y;
 public:

 Point(){x=0;y=0;}

 Point(int a, int b=0):x(a),y(b){};

 Point(const Point&);

 Point operator+(const Point&)const;

 int& operator[](int);

 ~Point(){};

 friend ostream& operator<<(ostream&, Point&);

};

file shape.h
#include "point.h"
#include <iostream.h>
class Shape{

 private:

 Point center;

 public:

Shape(){center[0]=0;center[1]=0;}

 Shape(const Point&);

 virtual ~Shape(){};

 void set_center(const Point&);

 Point get_center(){return center;}

 virtual void print(){cout <<"center at "<<center[0] <<","<< center[1];};

};

file circle.h
#include "shape.h"
class Circle:public Shape
{

 private:

int radius;

 public:

Circle():Shape(),radius(0){};

 Circle(int a,int b, int r):radius(r){set_center(Point(a,b));}

 Circle(Point& p,int r):Shape(p),radius(r){}

 Circle(Circle& c){radius = c.radius;set_center(c.get_center());}

 virtual ~Circle();

void print(){Shape::print(); cout<<" with radius "<< radius<<endl;};

};

file point.C
Point::Point(const Point& p)
{

x = p.x;
y = p.y;

}
Point Point::operator +(const Point& p)const{

return Point(x+p.x,y+p.y);
}

int& Point::operator [](int i){
if(i == 0) return x;
else if(i == 1) return y;
else {

cout << "error in index for Point object"<< endl;
}

}

ostream& operator<<(ostream& o, Point& p){
o << "x = "<< p[0] <<", y = "<< p[1] << endl;
return o;

}

File shape.C

#include "shape.h"

void Shape::set_center(const Point& p){
center = p;

}

File circle.C

#include "circle.h"

Circle::~Circle(){}

File shape_test.C
#include "point.h"

#include "shape.h"

#include "circle.h"

int main(int argc, char* argv[])

{

 Point a(2,3), b(3,3);

 Point c = b + 7;

 c = a + b;

 cout << a << b;

 Circle d(4,5,6);

 d.print();

 Circle e(d);

 e.print();

 Shape* sp;

 sp = &e;

 sp->print();

return 0;
}

	Point.h
	Point.C
	Point() {}

	Part II
	File point.h
	file shape.h
	file circle.h
	file point.C
	File shape.C
	File circle.C
	File shape_test.C

