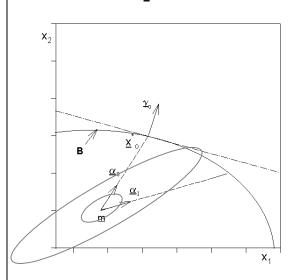

Brief Notes #9 CALCULATION OF RELIABILITY INDEX, β


$\underline{Z} \sim (\underline{0}, \underline{I})$

$X \sim (m, \Sigma)$

z-SPACE

x-SPACE

- 1. Select initial unit vector, $\underline{\alpha}_{o}$
- 2. Find $\underline{z}_{o}^{*} = \beta_{o} \underline{\alpha}_{o}$ where $\beta_{o} = \min \{ \beta : \beta \underline{\alpha}_{o} \in D_{F} \}$
- 3. Linearize B around \underline{z}_0^* Let $\underline{\gamma}_0$ be the unit external vector:

$$\underline{\gamma}_{o} = \frac{\operatorname{grad} g(\underline{z})}{|\operatorname{grad} g(\underline{z})|}\Big|_{\underline{z}_{o}^{*}}$$

4. Go back to step 2 with $\underline{\alpha}_0$ replaced with $\underline{\alpha}_1 = \underline{\gamma}_0$. Iterate until convergence in β and \underline{z}^* .

- 1. Select initial unit vector, $\underline{\alpha}_{o}$
- 2. Find $\underline{x}_o^* = \underline{m} + \delta \underline{\alpha}_o \in B$ and calculate β_o as:

$$\beta_{o} = \delta \left(\underline{\alpha}_{o}^{T} \underline{\Sigma}^{-1} \underline{\alpha}_{o} \right)^{\frac{1}{2}}$$

- 3. Linearize B at \underline{x}_{o}^{*} . (Calculate $\underline{\gamma}_{o}$ as in \underline{z} space).
- 4. The next search direction $\underline{\alpha}_1$ is that of the β point according to the linearized boundary. From analytical geometry, $\underline{\alpha}_1 \propto \underline{\Sigma} \, \underline{\gamma}_0$.
- 5. Go back to Step 2 until convergence.