Homework Set #5

Problem 1

X has probability density function as shown below.

Calculate the mean value m_X , variance σ_X^2 and second initial moment $E[X^2]$. Verify the relaton $E[X^2] = m_X^2 + \sigma_X^2$.

Problem 2

X has uniform distribution between 2 and 3. Consider a new variable $Y = X^3$.

- (a) Sketch the function Y(X).
- (b) Find the probability density function of Y.
- (c) Calculate the mean value and variance of X.
- (d) Using the probability density function found in (b), calculate the mean value and variance of Y.
- (e) Verify that m_{Y} and σ_{Y}^{2} can be obtained also as

$$m_{Y} = \int_{2}^{3} x^{3} f_{X}(x) dx$$
 and $\sigma_{Y}^{2} = \int_{2}^{3} (x^{3} - m_{Y})^{2} f_{X}(x) dx$.

Problem 3

Consider two discrete random variables X_1 and X_2 , with the joint probability mass function shown in the figure below. (Notice that the distribution is concentrated at four points, with equal probability 0.25 at each point).

- (a) Are X_1 and X_2 independent? Briefly explain why or why not.
- (b) Find the mean values m_1 and m_2 , the variances σ_1^2 and σ_2^2 , and the correlation coefficient ρ between X_1 and X_2 .