Homework Set \#5

Problem 1

X has probability density function as shown below.
$f_{X}(x)= \begin{cases}2 x, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}$

Calculate the mean value m_{X}, variance σ_{X}^{2} and second initial moment $\mathrm{E}\left[\mathrm{X}^{2}\right]$. Verify the relaton $\mathrm{E}\left[\mathrm{X}^{2}\right]=\mathrm{m}_{\mathrm{X}}^{2}+\sigma_{\mathrm{X}}^{2}$.

Problem 2

X has uniform distribution between 2 and 3. Consider a new variable $Y=X^{3}$.
(a) Sketch the function $\mathrm{Y}(\mathrm{X})$.
(b) Find the probability density function of Y.
(c) Calculate the mean value and variance of X .
(d) Using the probability density function found in (b), calculate the mean value and variance of Y .
(e) Verify that m_{Y} and σ_{Y}^{2} can be obtained also as

$$
\mathrm{m}_{\mathrm{Y}}=\int_{2}^{3} \mathrm{x}^{3} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx} \text { and } \sigma_{\mathrm{Y}}^{2}=\int_{2}^{3}\left(\mathrm{x}^{3}-\mathrm{m}_{\mathrm{Y}}\right)^{2} \mathrm{f}_{\mathrm{X}}(\mathrm{x}) \mathrm{dx}
$$

Problem 3

Consider two discrete random variables X_{1} and X_{2}, with the joint probability mass function shown in the figure below. (Notice that the distribution is concentrated at four points, with equal probability 0.25 at each point).

(a) Are X_{1} and X_{2} independent? Briefly explain why or why not.
(b) Find the mean values m_{1} and m_{2}, the variances σ_{1}^{2} and σ_{2}^{2}, and the correlation coefficient ρ between X_{1} and X_{2}.

