
Application Example 16 
(Conditional second moment analysis with vectors) 

 
PREDICTION OF DAILY TEMPERATURES USING 

SEVERAL PAST OBSERVATIONS 
 
 
 
In Application Example 15, we have seen how one can use second-moment results for 

normally distributed variables to update uncertainty on a scalar quantity X1 given a scalar 

observation X2. For many applications, one needs to extend those results to the case when 

the predicted quantity and/or the observed quantity is a vector.  We first review these 

extended results and then make an application to the prediction of temperature at 

different time lags. 

 

Conditional Distribution Results for Jointly Normal Vectors 

Consider two random vectors X1 and X2 with joint normal distribution, mean value 

vectors m1 and m2, and auto-covariance and cross-covariance matrices Σ11, Σ22 and Σ12 = 

Σ21
T.  These matrices are defined as Σij = E[(Xi - mi)(Xj - mj)T], i, j = 1, 2, where the 

superscript T denotes transposition. This means that the vector X =
X1
X2

⎡ 
⎣ ⎢ 

⎤ 
⎦  

 has joint 

normal distribution 

⎥

 

  X =
X1
X2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ≈ N

m1
m2

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ ,

Σ11 Σ12
Σ21 Σ22

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟      (1) 

 

Now suppose that X2 is measured and found to be equal to x2.  What is the conditional 

distribution of (X1|X2 = x2)?  One can show that this conditional distribution is also 

normal, with mean value vector m1|2 and covariance matrix Σ1|2 given by 

 

  
m1|2 = m1 + Σ12Σ22

−1 x2 − m2( )
Σ1|2 = Σ11 − Σ12 Σ22

−1Σ12
T

     (2) 
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In the special case when X1 and X2 are scalar quantities, Σ11 = σ1
2, Σ22 = σ2

2, and Σ12 = 

Σ21 = Cov[X1,X2] = ρσ1σ2 where ρ is the correlation coefficient between X1 and X2.  

Substitution into Eq. 2 gives 

 

  
m1|2 = m1 +ρ

σ1
σ2

x2 − m2( )

σ1|2
2 = σ1

2(1 − ρ2 )
      (3) 

 
which is the result in the scalar case (see Application Example 15).  Like in the scalar 

case, in the case when the distributions of X1 and X2 are not normal the expression for 

m1|2 in Eq. 2 is not in general the conditional mean of (X1|X2 = x2), but it always has the 

meaning of best linear unbiased estimator. 

If one is not interested in the conditional covariances among the components of 

X1, then one may apply Eq. 2 separately to each component of X1.  We do so in the 

application that follows. 

 

Prediction of Daily Temperatures 

Consider the sequence of maximum daily temperatures, {Xi, i = 0, ±1, ±2, ...} (the Xi 

could equally well be daily stock prices, soil properties at different spatial locations, river 

discharges in different months, traffic volumes in different days, etc.).  We observe Xi for 

i = i0 (today), and several previous days i0-1, i0-2, ...  We want to use these observations, 

with values xi0, xi0-1, xi0-2, ... to predict the future maximum daily temperatures Xi0+1, 

Xi0+2, ... 

 To be specific, suppose that we want to forecast daily temperatures in Boston, for 

the month of November.  To do so, we need the mean values, variances and covariances 

of such maximum temperatures.  From a historical record we obtain the following 

statistics: 

 

 • mean value (assumed to be the same for all days of the month):   m = 7°C 

 • standard deviation (assumed to be the same for all days of the month):   σ = 5°C 
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 • correlation function ρij (assumed to depend only on the time lag |i-j|): 

 

|i-j| ρij |i-j| ρij

0 1.00 6 0.16 

1 0.95 7 0.08 

2 0.81 8 0.04 

3 0.63 9 0.02 

4 0.44 ≥ 10 0.00 

5 0.28   

 

 

Using conditional second-moment analysis one can obtain several important results on 

temperature prediction. For example, one can predict temperature n days ahead, Xi0+n, 

using only temperature today, Xi0, or both temperature today and temperature yesterday. 

In the first case, calculations are based on Eq. 3. If one wants to make predictions based 

on temperature today and temperature yesterday, then one must use Eq. 2, where X1 = 

Xi0+n is a scalar and X2 = [Xi0, Xi0-1]T is a vector. 

 Numerical results are shown in Figures 1 and 2. For the case when temperature 

today is Xi0 = 15°C, Figure 1 shows E[Xi0+n|Xi0 = 15°C] - 7°C and {Var[Xi0+n|Xi0]}
1/2 as a 

function of the prediction time lag n. Notice that E[Xi0+n|Xi0 = 15°C] - 7°C is the amount 

by which the conditional mean (best predictor) deviates from the unconditional seasonal 

mean of 7°C and {Var[Xi0+n|Xi0]}
1/2 is the standard deviation of the prediction error. As 

one can see from Eq. 3, E[Xi0+n|Xi0 = 15°C] - 7°C is proportional to the correlation 

coefficient ρn. For n ≥ 10, ρn = 0 and the best predictor is the seasonal mean. This is why, 

for n ≥ 10, E[Xi0+n|Xi0 = 15°C] - 7°C = 0 and {Var[Xi0+n|Xi0]}
1/2 = 5°C.  
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Figure 1: E[Xi0+n|Xi0 = 15°C] - 7°C and {Var[Xi0+n|Xi0]}

1/2 as a function of prediction lag in days, n 

 

Figure 2 shows similar results when prediction is based on the observation of temperature 

today and yesterday. To exemplify, it was assumed that the observed temperature is 15°C 

for both days. While the trend of the conditional mean and conditional standard deviation 

are similar to those based only on temperature today, the values are not exactly the same. 

In particular, using information about temperature yesterday reduces the standard 

deviation of the prediction error (for example, the standard deviation for two-day lag 

prediction is about 3°C when one uses only temperature today and about 1.8°C when also 

temperature yesterday is used). 

 

 
Figure 2: E[Xi0+n|Xi0 = 15°C and Xi0-1 = 15°C] - 7°C and {Var[Xi0+n|Xi0, Xi0-1]}1/2 as functions of 

prediction lead in days, n 
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Problem 16.1  

Retain all the parameters of the example above, except for the correlations, which are 

now as follows. 

 

|i-j| ρij |i-j| ρij

0 1.0 6 0.4 

1 0.9 7 0.3 

2 0.8 8 0.2 

3 0.7 9 0.1 

4 0.6 ≥ 10 0.0 

5 0.5   

 

Produce plots analogous to those in Figures 1 and 2. Compare your results with those in 

Figures 1 and 2, giving qualitative explanations for the differences. 

 

[Note: You may find that, for the new correlation function, predictions using temperature 

today or temperature today and yesterday are very close. Such predictions are exactly the 

same if the temperature sequence has a property called Markovian dependence. For a 

Gaussian Markov sequence, the correlation function decays in an exponential manner, 

i.e. as ρij = e-|i-j|/c, where c is a positive constant. The linear correlation function you have 

used is not very different from exponential. This is why for that correlation function 

predictions are insensitive to considering temperature readings in previous days.]  
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