

Airline Revenue Management: Flight Leg and Network Optimization

1.201 Transportation Systems Analysis: Demand & Economics

Dr. Peter P. Belobaba

Lecture Outline

1. Overview of Airline Pricing

- Differential Pricing Theory
- Fare Restrictions and Disutility
- 2. Revenue Management Systems
- 3. Overbooking Models
- 4. Single-leg Fare Class Seat Allocation Problem
 - EMSRb Model for Seat Protection
- 5. Network Revenue Management
 - Origin-Destination Control Mechanisms
 - Network Optimization Methods

Differential Pricing Theory

- Market segments with different "willingness to pay" for air travel
- Different "fare products" offered to business versus leisure travelers
- Prevent diversion by setting restrictions on lower fare products and limiting seats available
- Increased revenues and higher load factors than any single fare strategy

- Progressively more severe restrictions on low fare products designed to prevent diversion:
 - Lowest fares have advance purchase and minimum stay requirements, as well as cancellation and change fees
 - Restrictions increase the inconvenience or "disutility cost" of low fares to travelers with high WTP, forcing them to pay more
 - Studies show "Saturday night minimum stay" condition to be most effective in keeping business travelers from purchasing low fares

• Still, it is impossible to achieve perfect segmentation:

- Some travelers with high WTP can meet restrictions
- Many business travelers often purchase restricted fares

Restrictions Help to Segment Demand

Fare	Dollar	Advance	Round	Sat. Night	Percent Non-
Code	Price	Purchase	Trip?	Min. Stay	Refundable
Y	\$400				
B	\$200	7 day	Yes		50 %
M	\$150	14 day	Yes	Yes	100 %
Q	\$100	21 day	Yes	Yes	100 %

• Business passengers unwilling to stay over Saturday night will not buy M or Q.

• RM system protects for Y, B demand but keeps M,Q classes open without losing revenue.

Example: Restriction Disutility Costs

BOS-SEA Fare Structure

American Airlines, October 1, 2001

Roundtrip	Cls	Advance	Minimum	Change	Comment
Fare (\$)		Purchase	Stay	Fee?	
458	N	21 days	Sat. Night	Yes	Tue/Wed/Sat
707	Μ	21 days	Sat. Night	Yes	Tue/Wed
760	Μ	21 days	Sat. Night	Yes	Thu-Mon
927	Η	14 days	Sat. Night	Yes	Tue/Wed
1001	H	14 days	Sat. Night	Yes	Thu-Mon
2083	В	3 days	none	No	2 X OW Fare
2262	Y	none	none	No	2 X OW Fare
2783	F	none	none	No	First Class

- YM assumes a set of differentiated fare classes and available flight capacity as <u>given</u>:
 - Forecast future booking demand for each fare product
 - Optimize number of seats to be made available to each fare class

• Optimal control of available seat inventory:

- On high demand flights, limit discount fare and group bookings to increase overall yield (average fare) and revenue.
- On low demand flights, sell empty seats at any low fare to increase load factors and revenue.
- <u>Revenue</u> maximization requires a balance of yield and load factor

 Most airlines now refer to "Revenue Management" (RM) instead.

- Collects and maintains historical booking data by flight and fare class, for each past departure date.
- Forecasts future booking demand and no-show rates by flight departure date and fare class.
- Calculates limits to maximize total flight revenues:
 - Overbooking levels to minimize costs of spoilage/denied boardings
 - Booking class limits on low-value classes to protect high-fare seats
- Interactive decision support for RM analysts:
 - Can review, accept or reject recommendations

Third Generation RM System

Overbooking

 Accept reservations in excess of aircraft capacity to overcome loss of revenues due to passenger "no-show" effects

• Fare Class Mix (Flight Leg Optimization)

 Determine revenue-maximizing mix of seats available to each booking (fare) class on each flight departure

• Traffic Flow (O-D) Control (Network Optimization)

 Further distinguish between seats available to short-haul (oneleg) vs. long-haul (connecting) passengers, to maximize total network revenues

- Determine maximum number of bookings to accept for a given physical capacity.
- Minimize total costs of <u>denied boardings</u> and <u>spoilage</u> (lost revenue).
- U.S. domestic no-show rates can reach 15-20 percent of final pre-departure bookings:
 - On peak holiday days, when high no-shows are least desirable
 - Average no-show rates have dropped, to 10-15% with more fare penalties and better efforts by airlines to firm up bookings
- Effective overbooking can generate as much revenue gain as fare class seat allocation.

• Find AU that minimizes :

[Cost of DB + Cost of SP]

• For any given AU:

<u>Total Cost</u> = \$DB * E[DB] + \$SP * E[SP]

\$DB and \$SP= cost per DB and SP, respectively
E[DB] = expected number of DBs, given AU
E[SP] = expected number of SP seats, given AU

 Mathematical search over range of AU values to find minimum total cost.

Cost-Based Overbooking Model

Minimize total cost of expected Denied Boardings plus Spoiled Seats

2007 US Involuntary DBs per 10,000

• Given for a future flight leg departure date:

- Total remaining booking capacity of (typically) the coach compartment
- Several fare (booking) classes that share the same inventory of seats in the compartment
- Forecasts of future booking demand by fare class between current DCP and departure
- Revenue estimates for each fare (booking) class

• Objective is to maximize total expected revenue:

 Protect seats for each fare class based on revenue value, taking into account forecast uncertainty and probability of realizing the forecasted demand

Serially Nested Buckets

EMSRb Model for Seat Protection: Assumptions

Modeling assumptions for serially nested classes:

- a) demand for each class is separate and independent of demand in other classes.
- b) demand for each class is stochastic and can be represented by a probability distribution
- c) lowest class books first, in its entirety, followed by the next lowest class, etc.
- d) booking limits are only determined once (i.e., static optimization model)
- Problem is to find protection levels for higher classes, and booking limits on lower classes

• To calculate the optimal protection levels:

Define $P_i(S_i)$ = probability that $X_i \ge S_i$, where S_i is the number of seats made available to class i, X_i is the random demand for class I

• The expected marginal revenue of making the Sth seat available to class i is:

 $EMSR_i(S_i) = R_i * P_i(S_i)$ where R_i is the average revenue (or fare) from class i

• The optimal protection level, π_1 for class 1 from class 2 satisfies:

 $\text{EMSR}_{1}(\pi_{1}) = \text{R}_{1} * \text{P}_{1}(\pi_{1}) = \text{R}_{2}$

Consider the following flight leg example:

<u>Class</u>	<u>Mean Fcst.</u>	Std. Dev.	Fare
Υ	10	3	1000
В	15	5	700
Μ	20	7	500
Q	30	10	350

• To find the protection for the Y fare class, we want to find the largest value of π_Y for which EMSR_Y(π_Y) = R_Y * P_Y(π_Y) ≥ R_B

$$EMSR_{Y}(\pi_{Y}) = 1000 * P_{Y}(\pi_{Y}) \ge 700$$
$$P_{Y}(\pi_{Y}) \ge 0.70$$

where $P_Y(\pi_Y)$ = probability that $X_Y \ge \pi_{Y_1}$

 Assume demand in Y class is *normally* distributed, then we can create a standardized normal random variable as (X_Y - 10)/3:

for $\pi_{Y} = 7$, Prob { (X_Y-10)/3 ≥ (7 - 10)/3 } = 0.841

for $\pi_{y} = 8$, Prob { (X_y -10)/3 ≥ (8 - 10)/3 } = 0.747

for $\pi_{Y} = 9$, Prob { (X_Y-10)/3 ≥ (9 - 10)/3 } = 0.63

• $\pi_{Y} = 8$ is the largest integer value of π_{Y} that gives a probability \geq 0.7 and we will protect 8 seats for Y class.

Joint protection for classes 1 through n from class n+1

$$\overline{X}_{1,n} = \sum_{i=1}^{n} \overline{X}_{i}$$

$$\hat{\sigma}_{1,n} = \sqrt{\sum_{i=1}^{n} \hat{\sigma}_{i}^{2}}$$

$$R_{1,n} = \frac{\sum_{i=1}^{n} R_{i} * \overline{X}_{i}}{\overline{X}_{1,n}}$$

• We then find the value of π_n that makes

EMSR_{1,n}(π_n) = **R**_{1,n} * **P**_{1,n}(π_n) = **R**_{n+1}

• Once π_n is found, set BL_{n+1} = Capacity - π_n

EMSRb Seat Protection Model

CABIN CAPACITY =		135					
AVAILABL	AVAILABLE SEATS =		135				
BOOKING	AVE	RAGE	SEATS	FORECAST	DEMAND	JOINT	BOOKING
CLASS	FAR	E	BOOKED	MEAN	SIGMA	PROTECT	LIMIT
Υ	\$	670	0	12	7	6	135
Μ	\$	550	0	17	8	23	129
В	\$	420	0	10	6	37	112
V	\$	310	0	22	9	62	98
Q	\$	220	0	27	10	95	73
L	\$	140	0	47	14		40
	SUN	M	0	135			

- RM systems revise forecasts and re-optimize booking limits at numerous "checkpoints":
 - Monitor actual bookings vs. previously forecasted demand
 - Re-forecast demand and re-optimize at fixed checkpoints or when unexpected booking activity occurs
 - Can mean substantial changes in fare class availability from one day to the next, even for the same flight departure
- Substantial proportion of fare mix revenue gain comes from dynamic revision of booking limits:
 - Human intervention is important in unusual circumstances, such as "unexplained" surges in demand due to special events

Revision of Forecasts and Limits as Bookings Accepted

CABIN CAPACITY =		135					
AVAILABL	AVAILABLE SEATS =		63				
BOOKING	AVEF	RAGE	SEATS	FORECAST	DEMAND	JOINT	BOOKING
CLASS	FARE	E	BOOKED	MEAN	SIGMA	PROTECT	LIMIT
Υ	\$	670	2	10	5	5	63
Μ	\$	550	4	13	7	19	58
В	\$	420	5	5	2	27	44
V	\$	310	12	10	5	40	36
Q	\$	220	17	20	6	63	23
L	\$	140	32	15	4		0
	SUN		72	73			

Higher than expected Q bookings close L class

- Advanced airlines are developing O-D control after having mastered basic leg/class RM controls
 - Effective leg-based fare class control and overbooking alone can increase total system revenues by 4 to 6%
- "The capability to respond to different O-D requests with different seat availability."
- Effective O-D control can further increase total network revenues by 1 to 2%
 - Depends on network structure and connecting flows
 - O-D control gains increase with average load factor
 - But implementation is more difficult than leg-based RM systems

O-D Control Example: Hub Network

• Marginal value concept is basis of leg RM:

- Accept booking in fare class if revenue value exceeds marginal value of last (lowest valued) remaining available seat on the flight leg
- In network RM, need to estimate marginal network value of last seat on each leg:
 - Can be used as "displacement cost" of a connecting vs. local passenger
 - Or, as a minimum acceptable "bid price" for the next booking on each leg

- Contribution of an ODF to network revenue on a leg is less than or equal to its total fare:
 - Connecting passengers can displace revenue on down-line (or up-line) legs
- Given estimated down-line displacement, ODFs are mapped based on <u>network</u> value:
 - Network value on Leg 1 = Total fare minus sum of down-line leg displacement costs
 - Under high demand, availability for connecting passengers is reduced, locals get more seats

Virtual Class Mapping with Displacement

NCE/FRA		NCE/HKG	(via FRA)]	NCE/JFK	(via FRA)
CLASS	FARE (OW)	CLASS	FARE (OW)]	CLASS	FARE (OW)
Y	\$450	Y	\$1415		Y	\$950
В	\$380	В	\$975		В	\$710
М	\$225	М	\$770		M	\$550
Q	\$165	Q	\$590		Q	\$425
V	\$135	V	\$499		V	\$325

MAPPING OF ODFs ON NCE/FRA LEG TO VIRTUAL VALUE CLASSES

VIRTUAL	REVENUE	MAPPING OF]	
CLASS	RANGE	O-D MARKETS/CLA	SSES		
1	1200 +	Y NCEHKG			
2	900-1199	B NCEHKG Y N	ICEJFK		
3	750-899	M NCEHKG			
4	600-749	B NCEJFK			
5	500-599	Q NCEHKG M N	ICEJFK	1 Jr	
6	430-499	V NCEHKG Y N	ICEFRA		Displacement
7	340-429	B NCEFRA Q N	ICEJFK		Adjustment
8	200-339	V NCEJFK M N	JCEFRA	╷╸ └	
9	150-199	Q NCEFRA			
10	0 - 149	V NCEFRA]	

- Marginal value of last seat can also represent the flight leg "Bid Price":
 - A minimum "cutoff" value required to accept a booking request
 - For a single-leg itinerary, a request is accepted if the corresponding fare is greater than the bid price for the leg.
 - For a multi-leg itinerary, the ODF fare must be greater than the sum of the bid prices of all flight legs used by the itinerary.
- Much simpler inventory control mechanism than virtual buckets:
 - Simply need to store bid price value for each leg
 - Must revise bid prices frequently to prevent too many bookings of ODFs at current bid price

Example: Bid Price Control

A -----> D -----> D

- Given leg bid prices
 - A-B: \$34 B-C: \$201 C-D: \$169
- Availability for O-D requests B-C:

	Bid Price = \$201	Available?
Y	\$440	Yes
М	\$315	Yes
В	\$223	Yes
Q	\$197	No

A-B: \$34 B-C: \$201 C-D: \$169

<u>A-C</u>	Bid Price = \$235	Available?
Y	\$519	Yes
Μ	\$344	Yes
В	\$262	Yes
Q	\$231	No

<u>A-D</u>	Bid Price = \$404	Available?
Y	\$582	Yes
Μ	\$379	No
В	\$302	No
Q	\$269	No

- Network optimization mathematics needed for both bid price and value bucket controls.
- Several optimization methods to consider:
 - Deterministic Linear Programming
 - Dynamic Programming
 - Nested Probabilistic Network Bid Price

• Simulated revenue gains are quite similar:

 ODF database, forecast accuracy and robustness under realistic conditions make a bigger difference

Maximize Total Revenue = Sum [Fare * Seats]

Summed over all ODFs on network

Subject to following constraints:

Seats for each ODF <= Mean Forecast Demand Sum[Seats on Each Leg] <= Leg Capacity

Outputs of LP solution:

- Seats allocated to each ODF (not useful)
- "Shadow price" on each leg (reflects network revenue value of last seat on each flight leg)

O-D Control System Alternatives

O-D Control	Data and	Optimization	Control
System	Forecasts	IVIODEI	Niechanism
Rev. Value Buckets	Leg/bucket	Leg EMSR	Leg/bucket Limits
Heuristic Bid Price	Leg/bucket	Leg EMSR	Bid Price for Connex only
Disp. Adjust. Value Bkts.	ODF	Network + Leg EMSR	Leg/bucket Limits
Network Bid Price	ODF	Network	O-D Bid Prices

O-D Revenue Gain Comparison Airline A, O-D Control vs. Leg/Class RM

Network Load Factor

• O-D control is the 4th generation of RM:

 Data collection, forecasting, optimization and control by origindestination-fare type as well as distribution channel

Provides control by itinerary and network value of requests, not simply by flight leg and class

- Incremental network revenue gains of 1-2% over basic RM
- Essential to protect against revenue loss to competitors
- Increased control of valuable inventory in the face of pricing pressures, new distribution channels, and strategic alliances

MIT OpenCourseWare http://ocw.mit.edu

1.201J / 11.545J / ESD.210J Transportation Systems Analysis: Demand and Economics $\ensuremath{\mathsf{Fall}}$ 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.