Freight Demand

Moshe Ben-Akiva

1.201 / 11.545 / ESD.210 Transportation Systems Analysis: Demand & Economics

Fall 2008

Outline

- Background
 - Volumes
 - Types
 - Econometric Indicators
- Freight demand modeling
 - Framework
 - Logistics choices
 - Model system
- Trends and Summary
- Appendices: Extensions, Activity Systems, Model System

Major Types of Freight

- Bulk
 - Coal
 - Oil, Gas
 - Ores, Minerals, Sand and Gravel
 - Agricultural
- General Merchandise
 - Supermarket grocery
- Specialized Freight
 - Automobile
 - Chemicals
- Small Package

Bulk

- Commodity Characteristics
 - Cheap
 - Vast quantities
 - Transport cost is a major concern
- Relevant Modes
 - Rail unit train and multi-car shipments
 - Heavy truck
 - Barge and specialized ships
 - Pipeline

General Merchandise

- Commodity characteristics
 - Higher value
 - Greater diversity of commodities
 - Many more shippers and receivers
 - Logistics costs are as important as transport costs
- Relevant Modes
 - Rail general service freight car
 - Intermodal
 - Truckload
 - LTL (Less-than-Truckload)

Specialized Freight

- Commodity Characteristics
 - Large volumes, relatively few customers
 - Specialized requirements to reduce risk of loss and damage
 - High value (can afford special treatment)
- Relevant Modes
 - Specialized rail (multi-levels, tank cars, heavy duty flats)
 - Specialized trucks (auto carriers, tank trucks, moving vans)
 - Air freight

Small Package

- Commodity Characteristics
 - Very high value
 - Logistics costs are more important than transport costs
 - Deliveries to small businesses or consumers
- Relevant Modes
 - LTL
 - Small packages services
 - Express services
 - Air freight

Growth in US Domestic Freight Ton-Miles by Mode: 1996 - 2005

SOURCE: U.S. Department of Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics. BTS Special Report: A Decade of Growth in Domestic Freight, Table 1 (July 2007).

Freight Demand

- Freight transport demand is a derived demand
 - Related to the volumes of goods produced and consumed
 - Location of suppliers and consumers is critical
 - Freight flows shift with
 - New sources of and uses for materials
 - New locations for manufacturers and retailers
 - New products and specialized transport

Freight Elasticities

Model, elasticity type	Elasticity estimates	
	Rail	Truck
Aggregate mode split model ^a		
Price	-0.25 to -0.35	-0.25 to -0.35
Transit time	-0.3 to -0.7	-0.3 to -0.7
Aggregate model from translog cost function b,c		
Price	-0.37 to -1.16 ^d	-0.58 to -1.81 ^e
Disaggregate mode choice model b,f		
Price	-0.08 to -2.68	-0.04 to -2.97
Transit time	-0.07 to -2.33	-0.15 to -0.69

a. Levin, Richard C. 1978. "Allocation in Surface Freight Transportation: Does Rate Regulation Matter?" *Bell Journal of Economics* 9 (Spring): 18-45 b. These estimates vary by commodity group; we report the largest and smallest.

c. Friedlaender, Ann F., and Richard Spady. 1980. "A Derived Demand Function for Freight Transportation." *Review of Economics and Statistics* 62 (August) d. The first value applies to mineral products; the second value to petroleum products.

e. The first value applies to petroleum products; the second value to mineral products.

f. Winston, Clifford. 1981. "A Disaggregate Model of the Demand for Intercity Freight Transportation". Econometrica 49 (July): 981-1006

Freight Value of Time (VOT)

	VOT estimates	
	Rail	Truck
(As percentage of shipment value)		
Total transit time (in days)	6-21	8-18

The lower value applies to primary and fabricated metals; the higher value applies to perishable agriculture products.

Source: Winston, Clifford. 1979. "A Disaggregate Qualitative Mode Choice Model for Intercity Freight Transportation." Working paper SL 7904. University of California at Berkeley, Department of Economics.

Outline

- Background
 - Volumes
 - Types
 - Econometric Indicators
- Freight demand modeling
 - Framework
 - Logistics choices
 - Model system
- Trends and Summary
- Appendices: Extensions, Activity Systems, Model System

Freight Modeling Framework

Forecasting Freight OD Flows

- Growth Factors:
 - Factor an existing OD trip table of commodity flows to estimate future flows
- Gravity Models:
 - The distribution step in a 4-step model
- Economic Activity Models:
 - Trace the flows of commodities between economic sectors and between regions

Growth Factors

- Supply and Demand from a region are predicted using "Growth Factors"
- Iterative Proportional Fitting (IPF) technique is used
- Given the S_i , D_j and T_{ij}^0 , calculate T_{ij} , α_i and β_j

$$T_{ij} = \alpha_i \beta_j T_{ij}^o \qquad i = 1, ..., I \text{ and } j = 1, ..., J$$

$$\sum_{i}^{j} T_{ij} = S_i, \qquad i = 1, ..., I$$

$$\sum_{i}^{j} T_{ij} = D_j, \qquad j = 1, ..., J$$

Where, T_{ij} = predicted OD flow between region *i* and region *j* T^{o}_{ij} = initial OD flow between region *i* and region *j* α_{i} and β_{j} = balancing factors for regions *i* and *j* respectively S_{i} = supply at region *i* and D_{j} = demand at region *j*

Gravity Model

• IPF with
$$T_{ij}^{0} = S_i D_j f(C_{ij})$$

 $T_{ij} = \alpha_i S_i \beta_j D_j f(C_{ij}), \ i = 1, ..., I \text{ and } j = 1, ..., J$
 $\sum_j T_{ij} = S_i, \quad i = 1, ..., I$
 $\sum_i T_{ij} = D_j, \quad j = 1, ..., J$

Where,

 C_{ij} = generalized cost of shipping between regions *i* and *j* $f(C_{ij}) = e^{-\theta C_{ij}}$ = generalized cost function If $\theta \rightarrow \infty$, the model is equivalent to a linear programming problem:

Min
$$\sum_{i} \sum_{j} T_{ij}C_{ij}$$
, s.t. $\sum_{j}T_{ij} = S_i$, $\sum_{i}T_{ij} = D_j$

Outline

- Background
 - Volumes
 - Types
 - Econometric Indicators
- Freight demand modeling
 - Framework
 - Logistics choices
 - Model system
- Trends and Summary
- Appendices: Extensions, Activity Systems, Model System

Logistics Chain

Image removed due to copyright restrictions.

Multi-Leg Logistics Chain

- N : number of legs in a logistics chain
- *m* : sender
- *n* : receiver
- h : mode
- *t* : transhipment location

Decision Maker

- No single decision maker
 - Producers
 - Wholesalers, Distributors
 - Consumers
 - Carriers
 - Logistics service providers

Logistics Choices

- Shipment size/frequency
- Choice of loading unit
 - e.g. container, pallet, refrigerated
- Formation of tours
 - consolidation and distribution, multi-stop deliveries, batching
- Location of consolidation and distribution centers

Logistics Choices (cont.)

- Mode used for each tour leg
 - Road transport: vehicle types
 - Rail transport: train types
 - Maritime transport: vessel types
 - Air
- Shipment schedule

Logistics Costs

- Order management
- Transport
- Transshipment
- Loss and damage
- Capital tied up
- Inventory management
- Unreliability

Factors Affecting Logistics Costs

Inventory Management

Factors Affecting Logistics Costs

Order Management

The optimal quantity Q* is also known as the Economic Order Quantity (EOQ)

Modeling Complexities

- Widely varying commodities with different requirements and characteristics
- Level-of-service attributes
 e.g. shipment time, cost, reliability
- Characteristics of the shipment

e.g. size, frequency, goods typology (perishability, value)

Characteristics of the firm

annual revenue, availability of own trucks, availability of railway sidings

Data Requirements

- Size of firms by commodity and by region at production and consumption ends
- Shipments
- Consolidation center and distribution center locations, ports, airports, rail terminals
- Cost data
 - time and distance from network models combined with cost models

Freight Mode Choice Model

Model Specification

 $U_{in} = \mu(\text{logistics cost}_{in}) + \mathcal{E}_{in}$ logistics cost_{in} = $C_{in} + W_{in}\theta + r(T_{in} + Z_{in}\gamma)$

 μ : negative scale parameter;

 ε_{in} : error term that are i.i.d. standard normal;

C_{in}: transportation cost;

- W_{in}: row vector that contains the mode-specific constant, mode-specific variables that capture the effects of ordering costs, on-time delivery and equipment availability;
- T_{in}: daily value of in-transit stocks;
- Z_{in}: discount rate related variables such as loss and damage costs and stock-out costs;
- θ, γ : vectors of unknown coefficients;

r: discount rate.

Example of Estimation

- Data:
 - Survey of 166 large US shippers (1988)
 - Alternatives: Truck, Rail, Intermodal
 - Commodities: Paper, Aluminum, Pet food, Plastics and Tires.

Adapted from : Park, J. K. (1995). "Railroad Marketing Support System Based on the Freight Choice Model", PhD Thesis, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology

Example of Estimation (cont)

• Estimated logistics cost functions:

 $Truck \ Cost = -0.138 + (Transportation \ cost) + 0.372 (Distance) - 0.811 (Delivery \ time \ reliability) \\ - 4.35 (Equipment \ usability) - 0.0980 (Value / ton) + 0.456 [(In \ transit \ stock \ holding \ cost) \\ + 0.169 (Safety \ stock \ costs) + 1.65 (Loss \ and \ demage)]$

 $\begin{aligned} Rail\ Cost &= (Transportation\ cost) - 0.811 (Delivery\ time\ reliability) \\ &- 4.35 (Equipment\ usability) + 0.456 [(In\ transit\ stock\ holding\ cost) \\ &+ 0.169 (Safety\ stock\ costs) + 1.65 (Loss\ and\ demage)] \end{aligned}$

Intermodal Cost = $1.64 + (Transportation \ cost) - 0.811(Delivery \ time \ reliability)$ - $4.35(Equipment \ usability) + 0.456[(In \ transit \ stock \ holding \ cost)$ + $0.169(Safety \ stock \ costs) + 1.65(Loss \ and \ demage)]$

Sources of Heterogeneity

- Inter-shipper
 - Attitudes
 - Perceptions of service quality
 - Awareness of modal alternatives
- Intra-shipper
 - Shipment type (regular vs. emergency)
 - Customer (large vs. small)

Outline

- Background
 - Volumes
 - Types
 - Econometric Indicators
- Freight demand modeling
 - Framework
 - Logistics choices
 - Model system
- Trends and Summary
- Appendices: Extensions, Activity Systems, Model System

Model System

Outline

- Background
 - Volumes
 - Types
 - Econometric Indicators
- Freight demand modeling
 - Framework
 - Logistics choices
 - Model system
- Trends and Summary
- Appendices: Extensions, Activity Systems, Model System

Trends in Freight Modeling

• EMERGING ISSUES:

Smaller Inventories, Shorter lead time, Consolidation

• DATA:

Commodity Flow Surveys → Automated Data Collection (e.g. AVI, Remote Sensing)

• MODELING METHODS:

Aggregate Models \rightarrow Disaggregate Models

• APPLICATION/FORECASTING:

Aggregate Forecasting \rightarrow Disaggregate Forecasting

• BEHAVIORAL REPRESENTATION:

Homogeneous \rightarrow Heterogeneous (commodity types, supply-chains)
Summary

- Freight demand is expected to continue to grow at a steady rate
- Discrete choice models are useful to predict intermodalism in freight demand with explicit treatment of heterogeneity and perceptions
- Estimation requires detailed shipment data, not all of which are available
- Aggregate data can be used to calibrate the overall freight model system in absence of detailed shipment data

Appendix A

Extensions of logistics choice modeling

Extension 1: Distributed Discount Rate

- Shippers use *Discount Rate* (*r*) to calculate costs of inventory
- Discount rate varies significantly among shippers and shipments
- Model Specification:
 - $r \sim log normal(\mu, \sigma^2)$

$$\mu = -0.715, \sigma = 0.481$$

$$\overline{r} = 0.549, \sigma_r = 0.280$$

Distribution of Discount Rate

Extension 2: Shipper-Specific Discount Rate

- Multiple observations of the same shipper
- Shipper-specific discount rate captures correlation between observations from the same shipper
- Model Specification:

 $U_{int} = X_{int}\beta + Z_{int}r_{nt} + \mathcal{E}_{int}$ shipper specific discount rate

$$r_{nt} = r_n \ \forall t$$
$$r_n \sim \log normal(\overline{r}, \sigma_r^2)$$

Extension 3: Latent Variable Models

Latent Variable Models (cont.)

- "Qualitative Indicators" Provide Information on Latent Variables
 - Awareness
 - I could use rail as a substitute to truck service.
 - Sensitivity to Quality
 - I am willing to pay more for a mode with greater flexibility to accommodate emergency shipments.
 - Image
 - I like to use the most reliable technology

Latent Variable Model (cont.)

Latent Variable Model (cont)

*EDI: Electronic Data Interchange, which is a set of standards for structuring information that is to be electronically exchanged between and within businesses, organizations, government entities and other groups.

Latent Variable Model (cont)

- Significant improvement in log-likelihood
- Significant changes in some of the parameter estimates

Truck Cost = -0.266 + (Transportation cost) + 0.627(Distance) - 0.905(Delivery time reliability)

-0.466(Value / ton) - 4.67(Equipment usability)

+0.356[(In transit stock holding cost)+0.0970(Safety stock costs)

+2.28(Loss and demage)]-0.769(Perceived Quality)

 $Rail\ Cost = (Transportation\ cost) - 0.905 (Delivery\ time\ reliability) - 4.67 (Equipment\ usability)$

+0.356[(In transit stock holding cost)+0.0970(Safety stock costs)

+2.28(Loss and demage)]-0.769(Perceived Quality)

Intermodal Cost = 1.65 + (Transportation cost) - 0.905(Delivery time reliability) - 4.67(Equipment usability) + 0.356[(In transit stock holding cost) + 0.0970(Safety stock costs) + 2.28(Loss and demage)] - 0.769(Perceived Quality)

Extension 4: Combining Revealed and Stated Preference Data

- Features
 - Bias correction through explicit specification of stated preference model
 - Joint estimation with all available data

Combining Revealed & Stated Preferences Data (cont)

• Significant changes in parameter estimates and t-stats

	Estimates (t- statistics) RP&SP	Estimates (t- statistics) RP
Delivery time reliability	3.6(-7.8)	-0.91 (-1.0)
Equipment usability	-1.4 (-7.8)	-4.7 (-3.3)
Discount rate	0.20 (6.6)	0.36 (1.9)
Stock out costs	0.029 (0.1)	0.097 (2.9)
Loss and damage costs	5.0 (6.4)	2.3 (0.8)

References

 Ben-Akiva, M., Bolduc, D. and Park, J.Q. 2008, 'Discrete choice analysis of shipper's preferences', forthcoming in Ben-Akiva, M., Meersman, H. and Van de Voorde, E. (eds.), *Recent Developments in Transport Modelling: Lessons for the Freight Sector,* Emerald Group Publishing, United Kingdom, pp. 119-138.

Appendix B

Freight Economic Activity System Models

Economic Activity Models

- Spatial Price Equilibrium (SPE)
- Multiregional Input Output (MRIO)

Spatial Price Equilibrium (SPE) Models

- Demand and supply curves of each region/economic sector
- Deterministic demand behavior: there is commercial exchange of goods between two regions only if the price in the origin region plus the transport cost is equal to the price in the destination region
- Freight flows may be concentrated to a small number of OD pairs due to the deterministic nature of the model

SPE Models (cont.)

Equilibrium quantities and prices in Region A and Region B:

SPE Models (cont.)

Multiregional Input-Output (MRIO) Models

- Application of economic production functions to freight demand
- Economic activities of production and consumption are classified into sectors:
 - Production
 - Goods manufacturing
 - Services
 - Consumption
 - Household
 - Public
 - Investments
 - Stock variations
 - Export

MRIO Models (cont.)

- Study area is divided into regions
- MRIO models also account for external (or 'international') trade

MRIO Models: Example of Sectors

The input-output tables available for Italy are disaggregated in 17 sectors (11 of physical goods and 6 of services)

Agriculture and fishing

Energy

- Ferrous/non-ferrous minerals and materials
- Non-metal minerals and products
- PHYSICAL GOODS Chemical and pharmaceutical products
- Machinery and metal products
- Means of transport
- Food and drink industry, tobacco
- Textiles, clothing, leather and shoes Paper, book trade, other industrial products Wood, rubber

Civil constructions

- Retail trade, hotels, public concerns
- Transport and communications
- SERVICES Insurance and credit
- Other sale-related services
 - Non sale-related services

MRIO Models: Inputs

- Input-output table (matrix of technical coefficients)
 - Characterizes intermediate demand (i.e. how much of sector *m* production is required for sector *n* production)
- Matrix of trade coefficients
 - Characterizes interregional trade.
- Final demand
 - The final demand of each sector in each region.
- Value of quantity coefficients
 - Used to transform flows in monetary units to physical quantities

MRIO Models: Steps

1. The following relationship is used to relate production and intermediate demand:

$$K_j^{mn} = a_j^{mn} X_j^n$$

Where,

 K^{mn}_{j} = the value of the intermediate demand of the production in sector *m* (input) necessary for the production of sector *n* (output) in region *j* α^{mn}_{j} = technical coefficient that depends on the production "technologies" available in region *j*

 X_{j}^{n} = the value of the production of sector *n* in region *j*

MRIO Models: Steps (cont.)

- By definition, the total supply (production and import) of sector *m* in region *i* must be equal to the total demand (intermediate and final) of section *m* in region *i*. This leads to a system of simultaneous linear equations in which we solve for the value of production of each sector in each region
- 3. Given the trade coefficients, OD matrices of region-to-region trade flows are produced. The values in these matrices are all in monetary units
- Given the value-of-quantity coefficients, the values in the region-to-region trade flow matrices are converted to physical freight units (e.g. tons or vehicles)

Appendix C

Aggregate/Disaggregate Modeling

References

 Ben-Akiva, M. and de Jong, G. 2008, 'The aggregate-disaggregateaggregate (ADA) freight model system', forthcoming in Ben-Akiva, M., Meersman, H. and Van de Voorde, E. (eds.), *Recent Developments in Transport Modelling: Lessons for the Freight Sector,* Emerald Group Publishing, United Kingdom, pp. 139-162.

Combining Aggregate and Disaggregate Models

Modeling Steps

• Step A

allocation of flows to individual firms at production (P) and consumption (C) ends

• Step B

logistics decisions: chain type, mode, shipment size

Step C

aggregation of the individual shipments to OD flows for assignment

Step A: Allocation of Flows

- Aggregate P/C flows disaggregated to the level of decision-making unit
- General approaches:
 - Re-weighting
 - Use an existing sample or population and re-weight using marginal distributions
 - Synthetic
 - Draw from a sequence of conditional distributions
 - Hybrid
 - Begin with re-weighting and enrich the set of characteristics using synthetic draws

Step B: Logistics Chain Choice

Minimize: Total cost to transport a shipment of size q between firm m and firm n using logistics chain k

Step C: OD Flows for Assignment

- Shipments for the same commodity type aggregated to OD flows in vehicles
- Summation over shipments

Calibration and Validation

- Aggregate calibration
 - Concerns different equilibrium situations
 - Coefficients of sub models are adjusted to better match aggregate data
- Validation
 - Inputs from a different year is used and the predicted OD flows are compared against the actual flows
 - Major discrepancies may lead to readjustment of model coefficients

Application

- National model systems for freight transport in Norway and Sweden
- Previous models
 - Norway: NEMO, Sweden: SAMGODS
 - Multi-modal assignment with deterministic logistics model
- Proposed model
 - Aggregate-Disaggregate-Aggregate (ADA) freight model system

Freight Model System: Norway and Sweden

- Two-step logistics cost minimization:
 - Step 1:
 - Determine the optimal transshipment locations for each type of transport chain and OD region.
 - Step 2:
 - Determine the shipment size and transport chain.

Freight Model System: Norway and Sweden (cont.)

Estimation, Calibration and Validation of the Model System

Freight Model System: Norway and Sweden (cont)

- Shipment size (and frequency) and transport chain determined on the basis of deterministic costs minimization
 - 10 road vehicle types, 28 vessel types, 8 train types, 2 aircraft types
 - Container and non-container vehicle and vessel types
- P/C flows
 - Senders (P): more than 100,000 firms
 - Receivers (C): more than 400,000 firms
 - Result: 6 million firm-firm flows per year

1.201J / 11.545J / ESD.210J Transportation Systems Analysis: Demand and Economics Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.