1. Problem 1

Part (a)
Let $A=$ Area of inner region of coverage.

$$
E[A]=E\left[\left|X_{1}-X_{2}\right| \cdot\left|Y_{1}-Y_{2}\right|\right]=E\left[\left|X_{1}-X_{2}\right|\right] \cdot E\left[\left|Y_{1}-Y_{2}\right|\right]=\frac{1}{3} \cdot \frac{1}{3}=\frac{1}{9}
$$

Part(b)

Let variance of $A=\sigma^{2}=E\left[A^{2}\right]-E[A]^{2}$. Therefore,

$$
E\left[\left(\left|X_{1}-X_{2}\right| \cdot\left|Y_{1}-Y_{2}\right|\right)^{2}\right]-\left(\frac{1}{9}\right)^{2}=E\left[\left|X_{1}-X_{2}\right|^{2}\right] \cdot E\left[\left|Y_{1}-Y_{2}\right|^{2}\right]-\left(\frac{1}{9}\right)^{2}
$$

Here

$$
E\left[\left|X_{1}-X_{2}\right|^{2}\right]=E\left[\left|Y_{1}-Y_{2}\right|^{2}\right]=\int_{0}^{1} x^{2} 2(1-x) d x=\frac{2}{3}-\frac{2}{4}=\frac{1}{6}
$$

Thus

$$
\sigma^{2}=\left(\frac{1}{6}\right)^{2}-\left(\frac{1}{9}\right)^{2}=\frac{5}{324}
$$

$\operatorname{Part}(\mathbf{c})$

$$
\begin{gathered}
F_{A}(a)=\operatorname{Pr}(A \leq a)=\operatorname{Pr}\left(D_{x} D_{y} \leq a\right) \\
F_{A}(a)=1-\int_{a}^{1} \int_{a / x}^{1} 4(1-y)(1-x) d y d x
\end{gathered}
$$

Problem 2

Part(a)
Answer =

$$
\frac{\lambda}{\lambda+\mu_{1}}
$$

This is the probability that a new customer will arrive before service to the first customer in the

Figure 1: Problem 2
busy period is completed.

Part (b) There are two ways this can happen.

- Prob1 After first customer arrives: new customer arrives - new customer arrives - three service completions.
- Prob2 After first customer arrives: new customer arrives - i service completion - new customer arrives - two service completions.

$$
\begin{gathered}
\operatorname{Prob}(1)=\left(\frac{\lambda}{\mu_{1}+\lambda}\right)^{2}\left(\frac{\mu_{1}}{\mu_{1}+\lambda}\right)\left(\frac{\mu}{\mu+\lambda}\right)^{2} \\
\operatorname{Prob}(2)=\left(\frac{\lambda}{\mu_{1}+\lambda}\right)^{2}\left(\frac{\mu_{1}}{\mu_{1}+\lambda}\right)^{2}\left(\frac{\lambda}{\mu+\lambda}\right)\left(\frac{\mu}{\mu+\lambda}\right)^{2}
\end{gathered}
$$

Therefore, answer is

$$
\operatorname{Prob}(1)+\operatorname{Prob}(2)
$$

Part (C) Answer is 'Yes.' This is sufficient. The condition $\lambda<\mu$ prevents the queue from becoming infinitely long. Even if $\lambda \gg \mu_{1}$, all that will happen is that the probability of having
busy periods with more than one customer will be high.

Part (d) Let a state with a prime ($1^{\prime}, 2^{\prime}, 3, \ldots$) indicates a state in which the first customer after an idle period is still receiving service. States $1,2,3 \ldots$ are states in which the first customer after an idle period has already left the system.

Problem 3

Part (a) Suppose we have cdf $F_{X}(x)$ and pdf $f_{x}(x)$ and we are told that $Y=a X$, where $a>0$. Here $Y=200 X$, i.e., $a=200$. That is, we have scaled all distances from 1 to 200 .

$$
F_{Y}(y)=\operatorname{Pr}(Y<y)=\operatorname{Pr}(a X<y)=\operatorname{Pr}(X<y / a)=F_{X}(y / a)=1 / 2+\frac{1}{\pi} \tan ^{-1}(y / a)
$$

Thus,

$$
f_{Y}(y)=\frac{d}{d y} F_{X}(y / a)=\frac{1}{a} f_{X}(y / a)
$$

So, before truncation, we have

$$
f_{Y}(y)=\frac{1}{200 \pi} \frac{1}{1+(y / 200)^{2}}
$$

for all values of y. Truncation event $=T=-200<Y<200$.

$$
\begin{gathered}
\operatorname{Pr}(T)=F_{Y}(200)-F_{Y}(-200)=\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}(200 / 200)-\left(\frac{1}{2}+\frac{1}{\pi} \tan ^{-1}(-200 / 200)\right) \\
\operatorname{Pr}(T)=\frac{1}{\pi} \frac{\pi}{4}-\left(-\frac{1}{\pi} \frac{\pi}{4}\right)=\frac{1}{2}
\end{gathered}
$$

So, we can finally write,

$$
f_{Y \mid T}(y \mid T)=f_{Y}(y) / \operatorname{Pr}(T)=(1 / 100 \pi) \frac{1}{1+(y / 200)^{2}} \quad \text { for }-200<y<200
$$

Part (b) Mean $=0$ by symmetry and finiteness of the pdf. Variance is finite by bounded pdf.

Part (c) Question asks for

$$
\operatorname{Pr}(70<y<140 \mid T)=\frac{F_{Y}(140)-F_{Y}(70)}{\operatorname{Pr}(T)}=\frac{2}{\pi}\left(\tan ^{-1}(140 / 200)-\tan ^{-1}(70 / 200)\right)
$$

