$(\mathsf{R}|\Psi) = \cos \Psi + \sin \Psi = 2^{1/2} \cos(\Psi - \pi/4)$ 2. Identify Sample Space

 Probability Law over Sample Space: Invoke isotropy implying uniformity of angle

4. Find CDF

• $F_R(r) = P\{R < r\} = P\{2^{1/2} \cos(\Psi - \pi/4) < r\}$ • $F_R(r) = P\{R < r\} = P\{\cos(\Psi - \pi/4) < r/2^{1/2}\}$

And finally...

• After all the computing is done, we find: • $F_R(r) = 1 - (4/\pi)\cos^{-1}(r/2^{1/2}), 1 < r < 2^{1/2}$

•
$$f_R(r) = d[F_R(r)]/dr = (4/\pi) \{1/(2 - r^2)^{1/2}\}$$

Median R = 1.306 E[R] = 4/ π = 1.273 σ_R/E[R] = 0.098, implies very robust

A Quantization Problem

NYC Marine Transfer Station

1. The R.V.'s

- D = barge loads of garbage produced on a random day (continuous r.v.)
- Θ = fraction of barge that is filled at beginning of day (0 < Θ < 1)
- *K* = total number of completely filled barges produced by a facility on a random day (*K* integer)
 K = [*D* + ∅] = integer part of *D* + ∅

2. The Sample Space

- 3. Joint Probability Distribution
 - a) D and Θ are independent.
 - b) Θ is uniformly distributed over [0, 1]

3. Joint Probability Distribution

Buffon's Needle Experiment

1. The R.V.'s

- Y = distance from the center of the needle to closest of equidistant parallel lines 0< y < d/2
- Φ = angle of needle wrt horizontal 0< ϕ < π