$(R \mid \Psi)=\cos \Psi+\sin \Psi=2^{1 / 2} \cos (\Psi-\pi / 4)$
2. Identify Sample Space

3. Probability Law over Sample Space: Invoke isotropy implying uniformity of angle

4. Find CDF

$$
\begin{aligned}
F_{R}(r) & =P\{R<r\}=P\left\{2^{1 / 2} \cos (\Psi-\pi / 4)<r\right\} \\
F_{R}(r) & =P\{R<r\}=P\left\{\cos (\Psi-\pi / 4)<r / 2^{1 / 2}\right\}
\end{aligned}
$$

And finally...

After all the computing is done, we find:
$F_{R}(r)=1-(4 / \pi) \cos ^{-1}\left(r / 2^{1 / 2}\right), \quad 1<r<2^{1 / 2}$
$f_{R}(r)=d\left[F_{R}(r)\right] / d r=(4 / \pi)\left\{1 /\left(2-r^{2}\right)^{1 / 2}\right\}$

Median $\mathrm{R}=1.306$
$E[R]=4 / \pi=1.273$
$\sigma_{R} / E[R]=0.098$, implies very robust

A Quantization Problem

NYC Marine Transfer Station

Fresh Kills Landfill

1. The R.V.'s

$D=$ barge loads of garbage produced on a random day (continuous r.v.) $\Theta=$ fraction of barge that is filled at beginning of day ($0<\Theta<1$)
$K=$ total number of completely filled barges produced by a facility on a random day (K integer)
$K=\{D+\Theta\}=$ integer part of $D+\Theta$

2. The Sample Space

3. Joint Probability Distribution
a) D and Θ are independent.
b) Θ is uniformly distributed over $[0,1]$

3. Joint Probability Distribution
a) D and Θ are independent.
b) Θ is uniformly distributed over $[0,1]$

4. Working in the Joint Sample Space

Look at $\mathrm{E}[K \mid D=d]$

Let $d=i+x \quad 0<x<1$
$\mathrm{E}[K \mid D=i+x]=i(1-x)+(i+1) x=i+x=d$

Buffon's Needle Experiment

1. The R.V.'s

$Y=$ distance from the center of the needle to closest of equidistant parallel lines $0<y<d / 2$
$\Phi=$ angle of needle wrt horizontal
$0<\phi<\pi$

