Urban OR Quiz 1

October 20, 2003
"We blew it."
--Henry Fonda (Easy Rider)
Don't blow it: Just answer all questions, showing all work. Good luck.

1. Suppose that x_{1} and x_{2} are independent and both $U(0, a)$, and let $G(a)$ be the expected value of the cube of the larger of the two variables. Use Crofton's method to determine $G(a)$.
2. Suppose that vehicles are distributed over a large city under a spatial Poisson process with parameter λ, and let v_{i} be the straight-line distance to a given point from the $i^{\text {th }}$ nearest vehicle to that point. Find the probability that $v_{4}>4 v_{1}$ and also that $v_{4}>2 v_{2}$. (We are referring to the joint event involving v_{1} and v_{2}, not two separate events.)
3. Mendel arrives at a random time to ride the Lemon Line, on which the intervals between trains are equally like to be 4,5 , and 6 minutes.
(i) What is the probability that he waits between 4 and 5 minutes for the next train? (HINT: What is the conditional probability that he waits between 4 and 5 minutes if he arrives in an interval of length X ?)
(ii) Would the answer to (i) increase or decrease if the Lemon Line became less variable and all intervals between trains were exactly 5 minutes? Intuitively, why does the answer move in that direction?
4. Consider a small factory that has 3 machines that are all subject to breaking down. Machines break down independently of each other. Whenever a machine breaks down, it is sent to the factory's repair shop for service. The repair shop has two parallel and identical repair stations. Machines at the shop are repaired in a first come, first served order. It has been observed that the time needed to repair a machine at a repair station has an exponential pdf with an expected value of 2 hours. The time until a repaired machine breaks down again (and has to go back to the repair shop) also has an exponential pdf with an expected value of 9 hours.

Find the expected number of machines that are operating at this factory in steady state. A numerical answer is expected. Please explain your work clearly.

