Queueing Systems: Lecture 1

Amedeo R. Odoni
October 4, 2006

Announcements

- PS \#3 out this afternoon
- Due: October 19 (graded by 10/23)
- Office hours - Odoni: Mon. 2:30-4:30
- Wed. 2:30-4:30 on Oct. 18 (No office hrs 10/16)

Or send me a message

- Quiz \#1: October 25, open book, in class
- Old quiz problems and solutions: posted on 10/19

Topics in Queueing Theory

- Introduction to Queues
- Little's Law
- Markovian Birth-and-Death Queues
- The M/M/1 and Other Markovian Variations
- The M/G/1 Queue and Extensions
- Priority Queues
- Some Useful Bounds
- Congestion Pricing
- Queueing Networks; State Representations
- Dynamic Behavior of Queues

Lecture Outline

- Introduction to queueing systems
- Conceptual representation of queueing systems
- Codes for queueing models
- Terminology and notation
- Little's Law and basic relationships
- Birth-and-death models
- The M/M/1 queueing system

Reference: Chapter 4, pp. 182-203

Queues

- Queueing theory is the branch of operations research concerned with waiting lines (delays/congestion)
- A queueing system consists of a user source, a queue and a service facility with one or more identical parallel servers
- A queueing network is a set of interconnected queueing systems
Fundamental parameters of a queueing system:
- Demand rate
- Capacity (service rate)
- Demand inter-arrival times
- Service times
- Queue capacity and discipline (finite vs. infinite; FIFOIFCFS, SIRO, LIFO, priorities)
- Myriad details (feedback effects, "balking", "jockeying", etc.)

A Generic Queueing System

Applications of Queueing Theory

Some familiar queues:
_ Airport check-in; aircraft in a holding pattern
_ Automated Teller Machines (ATMs)
_ Fast food restaurants
_ Phone center's lines
_ Urban intersection
_ Toll booths
Spatially distributed urban systems and services
Level-of-service (LOS) standards
Economic analyses involving trade-offs among operating costs, capital investments and LOS
Congestion pricing

The Airside as a Queueing Network

Queueing Models Can Be Essential in Analysis of Capital Investments

Strengths and Weaknesses of Queueing Theory

- Queueing models necessarily involve approximations and simplification of reality
- Results give a sense of order of magnitude, changes relative to a baseline, promising directions in which to move
- Closed-form results essentially limited to "steady state" conditions and derived primarily (but not solely) for birth-and-death systems and "phase" systems
- Some useful bounds for more general systems at steady state
- Numerical solutions increasingly viable for dynamic systems
- Huge number of important applications

A Code for Queueing Models:
AIBIm

- Some standard code letters for A and B :
_M: Negative exponential (M stands for memoryless)
_ D: Deterministic
_ E_{k} :kth-order Erlang distribution
_ G: General distribution

Terminology and Notation

- Number in system: number of customers in queueing system
- Number in queue or "Queue length": number of customers waiting for service
- Total time in system and waiting time
- $N(t)$ = number of customers in queueing system at time t
- $P_{n}(t)=$ probability that $N(t)$ is equal to n at time t
- λ_{n} : mean arrival rate of new customers when $N(t)=n$
- μ_{n} : mean (total) service rate when $N(t)=n$

Terminology and Notation (2)

- Transient state: state of system at t is influenced by the state of the system at $t=0$
- Steady state: state of the system is independent of initial state of the system
- m: number of servers (parallel service channels)
- If λ_{n} and the service rate per busy server are constants λ and μ, respectively, then $\lambda_{n}=\lambda, \mu_{n}=$ min $(n \mu, m \mu)$; in that case:

Expected inter-arrival time $=1 / \lambda$
_ Expected service time $=1 / \mu$

Relationships among L, L_{q}, W, W_{q}

- Four unknowns: L, W, L_{q}, W_{q}
- Need 4 equations. We have the following 3 equations:
_ $L=\lambda W$ (Little's law)
- $L_{q}=\lambda W_{q}$
- $W=W_{q}+\frac{1}{\mu}$
- If we can find any one of the four expected values, we can determine the three others
- The determination of L (or other) may be hard or easy depending on the type of queueing system at hand
- $L=\sum_{n=0}^{\infty} n P_{n}\left(P_{n}\right.$: probability that n customers are in the system $)$

The Fundamental Relationship

Birth-and-Death Queueing Systems

1. m parallel, identical servers.
2. Infinite queue capacity (for now).
3. Whenever n users are in system (in queue plus in service) arrivals are Poisson at rate of λ_{n} per unit of time.
4. Whenever n users are in system, service completions are Poisson at rate of μ_{n} per unit of time.
5. FCFS discipline (for now).

The differential equations that determine the state probabilities

$$
P_{n}(t+\Delta t)=P_{n+1}(t) \cdot \mu_{n+1} \cdot \Delta t+P_{n-1}(t) \cdot \lambda_{n-1} \cdot \Delta t+P_{n}(t) \cdot\left[1-\left(\mu_{n}+\lambda_{n}\right) \cdot \Delta t\right]
$$

After a simple manipulation:
$\frac{d P_{n}(t)}{d t}=-\left(\lambda_{n}+\mu_{n}\right) \cdot P_{n}(t)+\lambda_{n-1} \cdot P_{n-1}(t)+\mu_{n+1} \cdot P_{n+1}(t)$
(1) applies when $n=1,2,3, \ldots$; when $n=0$, we have:

$$
\begin{equation*}
\frac{d P_{0}(t)}{d t}=-\lambda_{0} \cdot P_{0}(t)+\mu_{1} \cdot P_{1}(t) \tag{2}
\end{equation*}
$$

- The system of equations (1) and (2) is known as the Chapman-Kolmogorov equations for a birth-and-death system

The "state balance" equations

- We now consider the situation in which the queueing system has reached "steady state", i.e., t is large ${ }_{P}$ enough to have $P_{n}(t)=P_{n}$, independent of t , or $\frac{d P_{n}(t)}{d t}=0$
- Then, (1) and (2) provide the state balance equations:
$\lambda_{0} \cdot P_{0}=\mu_{1} \cdot P_{1}$
$n=0$
$\left(\lambda_{n}+\mu_{n}\right) \cdot P_{n}=\lambda_{n-1} \cdot P_{n-1}+\mu_{n+1} \cdot P_{n+1} \quad n=1,2,3, . . \quad$ (4)
- The state balance equations can also be written directly from the state transition diagram

Solving.....

Solving (3) and (4), we have:

$$
P_{1}=\frac{\lambda_{0}}{\mu_{1}} \cdot P_{0} ; \quad P_{2}=\frac{\lambda_{1}}{\mu_{2}} \cdot P_{1}=\frac{\lambda_{1} \cdot \lambda_{0}}{\mu_{2} \cdot \mu_{1}} \cdot P_{0} \quad \text { etc. }
$$

and, in general,
$P_{n}=\frac{\lambda_{n-1} \cdot \lambda_{n-2} \cdot \ldots . . \cdot \lambda_{1} \cdot \lambda_{0}}{\mu_{n} \cdot \mu_{n-1} \cdot \ldots . . \cdot \mu_{2} \cdot \mu_{1}} \cdot P_{0}=K_{n} \cdot P_{0}$
But, we also have: $1=\sum_{n=0}^{\infty} P_{n}=P_{0} \cdot\left(1+\sum_{n=1}^{\infty} K_{n}\right)$
Giving, $\quad P_{0}=\frac{1}{1+\sum_{n=1}^{\infty} K_{n}} \quad \begin{gathered}\text { Condition for steady state: } \\ \sum_{n=1}^{\infty} K_{n}<\infty\end{gathered}$

Birth-and-Death System: State Transition Diagram

- We are interested in the characteristics of the system under equilibrium conditions ("steady state"), i.e., when the state probabilities $P_{n}(t)$ are independent of t for large values of t
- Can write system balance equations and obtain closed form expressions for $P_{n}, L, W, L_{q}, W_{q}$

M/M/1: Observing State Transition Diagram from Two Points

$\lambda P_{0}=\mu P_{1}(\lambda+\mu) P_{1}=\lambda P_{0}+\mu P_{2}$

- From point 2:

M/M/1: Derivation of P_{0} and P_{n}

Step 1: $\quad P_{1}=\frac{\lambda}{\mu} P_{0}, \quad P_{2}=\left(\frac{\lambda}{\mu}\right)^{2} P_{0}, \cdots, \quad P_{n}=\left(\frac{\lambda}{\mu}\right)^{n} P_{0}$
Step 2: $\sum_{n=0}^{\infty} P_{n}=1, \Rightarrow P_{0} \sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n}=1 \Rightarrow P_{0}=\frac{1}{\sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n}}$
Step 3: $\quad \rho=\frac{\lambda}{\mu}$, then $\sum_{n=0}^{\infty}\left(\frac{\lambda}{\mu}\right)^{n}=\sum_{n=0}^{\infty} \rho^{n}=\frac{1-\rho^{\infty}}{1-\rho}=\frac{1}{1-\rho}(\because \rho<1)$
Step 4: $\quad P_{0}=\frac{1}{\sum_{n=0}^{\infty} \rho^{n}}=1-\rho$ and $P_{n}=\rho^{n}(1-\rho)$

High Sensitivity of Delay at High

Levels of Utilization

M/M/1: Derivation of L, W, W_{q}, and L_{q}

- $L=\sum_{n=0}^{\infty} n P_{n}=\sum_{n=0}^{\infty} n \rho^{n}(1-\rho)=(1-\rho) \sum_{n=0}^{\infty} n \rho^{n}=(1-\rho) \rho \sum_{n=1}^{\infty} n \rho^{n-1}$

$$
=(1-\rho) \rho \frac{d}{d \rho}\left(\sum_{n=0}^{\infty} \rho^{n}\right)=(1-\rho) \rho \frac{d}{d \rho}\left(\frac{1}{1-\rho}\right)
$$

$$
=(1-\rho) \rho\left(\frac{1}{(1-\rho)^{2}}\right)=\frac{\rho}{(1-\rho)}=\frac{\lambda / \mu}{1-\lambda / \mu}=\frac{\lambda}{\mu-\lambda}
$$

- $W=\frac{L}{\lambda}=\frac{\lambda}{\mu-\lambda} \cdot \frac{1}{\lambda}=\frac{1}{\mu-\lambda}$
- $W_{q}=W-\frac{1}{\mu}=\frac{1}{\mu-\lambda}-\frac{1}{\mu}=\frac{\lambda}{\mu(\mu-\lambda)}$
- $L_{q}=\lambda W_{q}=\lambda \cdot \frac{\lambda}{\mu(\mu-\lambda)}=\frac{\lambda^{2}}{\mu(\mu-\lambda)}$

M/M/1: An alternative, direct derivation of L and W

- For an M/M/1 system, with FCFS discipline:

$$
\begin{equation*}
W=\sum_{n=0}^{\infty} \frac{(n+1)}{\mu} \cdot P_{n}=E\left[\frac{N+1}{\mu}\right]=\frac{E[N]+1}{\mu}=\frac{L+1}{\mu} \tag{1}
\end{equation*}
$$

- But from Little's theorem we also have:
$L=\lambda \cdot W$
(2)
- It follows from (1) and (2) that, as before:
$L=\frac{\lambda}{\mu-\lambda} ; \quad W=\frac{1}{\mu-\lambda}$
Does the queueing discipline matter?

Additional important M/M/1 results

M/M/1: $E[B]$, the expected length of a busy period

- The pdf for the total time in the system, w, can be computed for a M/M/1 system (and FCFS):
$f_{w}(w)=(1-\rho) \mu e^{-(1-\rho) \mu w}=(\mu-\lambda) e^{-(\mu-\lambda) w}$ for $w \geq 0$
Thus, as already shown, $W=1 /(\mu-\lambda)=1 /[\mu(1-\rho)]$
- The standard deviation of N, w, N_{q}, w_{q} are all proportional to $1 /(1-\rho)$, just like their expected values (L, W, L_{q}, W_{q}, respectively)
- The expected length of the "busy period", $E[B]$, is equal to $1 /(\mu-\lambda)$

M/M/1: $E[B]$, the expected length of a busy period
But, $\quad P_{0}=1-\rho \quad E[$ length Idle period $]=1 / \lambda$ Therefore, $\quad E[B]=E[$ length Busy period $]=\frac{1}{\mu} \cdot \frac{1}{(1-\rho)}=\frac{1}{\mu-\lambda}$

