Spatially Distributed Queues

M/G/1
2 Servers
N servers
Approximations

Why Spatial Queues?

\mathscr{A} Demand responsive transportation systems
\&Organ donation queues
\&Warehouses
\&Supply chains
\&Cell phone systems
\&People waiting to be evacuated in a hurricane

M/G/1

Directions
 Of Travel

M/G/1

Directions
 Of Travel

M/G/1

HAmbulance always returns home with each service; standard $\mathrm{M} / \mathrm{G} / 1$ applies
ஆBut suppose we have an emergency repair vehicle that travels directly from one customer to the next?......

M/G/1with different 1st service time

$\overline{S_{1}}, \sigma_{S_{1}}^{2}=$ expected value and variance,respectively, of the 1st service time in a busy period $\overline{S_{2}}, \sigma_{S_{2}}^{2}=$ expected value and variance,respectively, of the 2 nd $\&$ all succeeding service times in a busy period
$\lambda \overline{S_{2}}<1$
$\rho=1-P_{0}=$ fraction of time server is busy

M/G/1with different 1st service time

$$
\begin{aligned}
& \rho=\frac{\lambda \overline{S_{1}}}{1-\lambda\left(\overline{S_{2}}-\overline{S_{1}}\right)} \\
& L=\rho+\frac{\lambda^{2}}{1-\lambda\left(\overline{S_{2}}-\overline{S_{1}}\right)}\left[\frac{\sigma_{S_{1}}^{2}+\bar{S}_{1}^{2}+\lambda\left\{\bar{S}_{1}\left(\sigma_{S_{2}}^{2}+\bar{S}_{2}^{2}\right)-\bar{S}_{2}\left(\sigma_{S_{1}}^{2}+\bar{S}_{1}^{2}\right)\right.}{2\left(1-\lambda \bar{S}_{2}\right)}\right]
\end{aligned}
$$

M/G/1with different 1st service time

Little' s Law : Buy one, get three others for free!

$$
L=\lambda W
$$

$$
L_{q}=\lambda W_{q}
$$

See the book, Eqs. (5.0) - (5.5)

M/G/1with different 1st service time

भDoes this new more general $\mathrm{M} / \mathrm{G} / 1$ model apply exactly to the ambulance problem?
\&Why or why not?

Two-Server "Hypercube" Queueing Model

\%Distinguishable servers
\&Different workloads (due to geography)
\&Can appear with or without queueing
©With -- usually FCFS
© Without -- usually means a backup contract service is in place
（1）

$\sqrt{1+1}+2=$
Coses)
Coses)
Coses)
Coses)
Coses)

B = "Service Region"

Poisson Arrivals from any sub-region A

B = "Service Region"

$$
\lambda=\lambda_{1}+\lambda_{2}
$$

Service Discipline

\&1st Dispatch Preference to 'primary server'
\mathscr{H} Otherwise, assign customer to other server, if available
\&Otherwise, job is 'lost" (What happens in practice?)

Balance of Flow Equations, Loss System

Balance of Flow Equations, Finite Capacity Queue System

Balance of Flow Equations, Infinite Capacity Queue System

Balance of Flow Equations, Loss System

$$
\begin{aligned}
& P_{00}\left(\lambda_{1}+\lambda_{2}\right)=P_{01} \mu+P_{10} \mu \\
& P_{01}(\lambda+\mu)=P_{11} \mu+P_{00} \lambda_{1}
\end{aligned}
$$

Etc.

$$
P_{00}+P_{10}+P_{01}+P_{11}=1
$$

Workload and Imbalances

$\mathscr{H} \rho_{1}=W_{1}=P_{01}+P_{11}$
$\mathscr{H} \rho_{2}=W_{2}=P_{10}+P_{11}$
$\&$ Workload Imbalance $=\Delta W=\left|W_{1}-W_{2}\right|$

To Obtain Travel Times,

 We Must Have Server Response Patterns$\mathscr{H} f_{n j}=$ fraction of dispatches that are server n to response area j
${ }_{H} T_{n}(\mathrm{C})=$ average time for server n to travel to a customer in region C
$\mathscr{H}(\mathrm{A})=$ average system-wide travel time, assuming that server 1's primary response area is region \mathbf{A}.

Average System-Wide Travel Time

$$
\begin{aligned}
T(\mathbf{A})= & f_{11} T_{1}(\mathbf{A})+f_{22} T_{2}(\mathbf{B}-\mathbf{A}) \\
& +f_{12} T_{1}(\mathbf{B}-\mathbf{A})+f_{21} T_{2}(\mathbf{A})
\end{aligned}
$$

Average System-Wide Travel Time

Average System-Wide Travel Time

$$
\begin{aligned}
T(\mathbf{A})= & f_{11} T_{1}(\mathbf{A})+f_{22} T_{2}(\mathbf{B}-\mathbf{A}) \\
& +f_{12} T_{1}(\mathbf{B}-\mathbf{A})+f_{21} T_{2}(\mathbf{A})
\end{aligned}
$$

Geometry

How do we obtain the $f_{n j}$'s?

HConsider a long time interval T
$\mathscr{H} f_{12}=(\#$ requests that assign unit 1 to area 2)/ (total \# requests answered)
\mathscr{H} Total \# requests answered $=\left(1-P_{11}\right) \lambda T$
\mathscr{H} Average \# requests that are "server 1 to area $2 "$ is $\lambda_{2} T P_{10}$. Why?
\mathscr{H} Therefore $f_{12}=\left(\lambda_{2} T P_{10} /\left[1-P_{11}\right] \lambda T\right)=$

$$
\left.\left\{\lambda_{2} /\left(1-P_{11}\right) \lambda\right)\right\} P_{10}
$$

How do we generalize this

 to N servers?
New York City EMS Hypercube

New York City EMS Hypercube

Rectangular City Example

Rectangular City Example
High
Demand Area:
50\%

Optimal Districting

\mathscr{H} "Dispatch the closest available server' is often not optimal, where 'optimal' implies minimizing mean travel time
\&May not be good for reducing workload imbalance either
\&With numerical example in book, the optimal boundary line is shifted to the right by 10/126 miles.

High
Rectangular City Example
Demand Area: 50\%

Boundary Line Comparison

\&Equal travel time boundary line
$\triangle T\left(A_{w=1 / 2}\right)=0.46246$
$\triangle \Delta \mathrm{W}=0.05236$
\&Optimal boundary line
$\triangle \mathrm{T}\left(\mathrm{A}_{\mathrm{w}^{*}}\right)=0.46166$
$\triangle \Delta \mathrm{W}=0.04405$

Two server Loss Model: Boundary Line Result

\mathscr{H} To minimize mean city-wide mean travel time:
\mathscr{H} The optimal partitioning consists of a set of points within the region that is a constant travel time s_{0} closer to facility 1 than to facility 2. (Carter, Chaiken, Ignall, 1972)
\&Does our rectangular city example work for this?

S_{0} : Optimal Partitioning

$\alpha \equiv \lambda / 2 \mu$
$\mu_{1}=\mu_{2}$
$S_{0}=[2 \alpha /(2 \alpha+1)]\left\{T_{2}(B)-T_{1}(B)\right\}$

High
Rectangular City Example
Demand Area: 50\%

Directions
 Of Travel

${ }^{2} \square$

\square_{1}

Directions Of Travel

Directions
 Of Travel

Directions
 Of Travel

And what about the corner case?

Directions
 Of Travel

The S_{0} result is general

\&Works for discrete grid
\mathscr{A} One way streets
\&General transportation network
\&Rick Jarvis, in an MIT Ph.D. thesis, generalized this to N servers

