Spatially Distributed Queues

M/G/1 2 Servers N servers Approximations

Why Spatial Queues?

Herein Construction Systems **#Organ donation queues** Warehouses **Supply chains #Cell phone systems #**People waiting to be evacuated in a hurricane

M/G/1

M/G/1

#Ambulance always returns home with each service; standard M/G/1 applies
#But suppose we have an emergency repair vehicle that travels directly from one customer to the next?.....

 $\overline{S_1}, \sigma_{S_1}^2 =$ expected value and variance, respectively, of the 1st service time in a busy period $\overline{S_2}, \sigma_{S_2}^2 =$ expected value and variance, respectively, of the 2nd & all succeeding service times in a busy period $\lambda \overline{S_2} < 1$

 $\rho = 1 - P_0$ = fraction of time server is busy

$$\rho = \frac{\lambda \overline{S_1}}{1 - \lambda (\overline{S_2} - \overline{S_1})}$$

$$L = \rho + \frac{\lambda^2}{1 - \lambda(\overline{S_2} - \overline{S_1})} \left[\frac{\sigma_{S_1}^2 + \overline{S_1}^2 + \lambda \{\overline{S_1}(\sigma_{S_2}^2 + \overline{S_2}^2) - \overline{S_2}(\sigma_{S_1}^2 + \overline{S_1}^2)}{2(1 - \lambda \overline{S_2})} \right]$$

Little's Law: Buy one, get three others for free!

 $L = \lambda W$

$$L_q = \lambda W_q$$

See the book, Eqs. (5.0) - (5.5)

Boes this new more general M/G/1 model apply exactly to the ambulance problem?

₩Why or why not?

Two-Server "Hypercube" Queueing Model

Distinguishable servers
 Different workloads (due to geography)
 Can appear with or without queueing
 With -- usually FCFS

Without -- usually means a backup contract service is in place

Poisson Arrivals from any sub-region A

Service Discipline

%1st Dispatch Preference to 'primary server'

Content of the server, if available

Contension: See Section 2018 Section 2018

Balance of Flow Equations, Loss System

Balance of Flow Equations, Loss System

$$P_{00} (\lambda_1 + \lambda_2) = P_{01} \mu + P_{10} \mu$$

$$P_{01} \left(\lambda + \mu\right) = P_{11} \mu + P_{00} \lambda_1$$

Etc.

$$P_{00} + P_{10} + P_{01} + P_{11} = 1$$

Workload and Imbalances

$$\begin{aligned} & \Re \rho_1 = W_1 = P_{01} + P_{11} \\ & \Re \rho_2 = W_2 = P_{10} + P_{11} \\ & \Re \text{ Workload Imbalance} = \Delta W = |W_1 - W_2| \end{aligned}$$

To Obtain Travel Times, We Must Have Server Response Patterns

 $\Re f_{nj}$ = fraction of dispatches that are server *n* to response area *j*

 $\mathcal{H}_{n}(\mathbf{C}) = \text{average time for server } n \text{ to travel}$ to a customer in region \mathbf{C}

ℋT(A) = average system-wide travel time, assuming that server 1's primary response area is region A.

Average System-Wide Travel Time

$T(\mathbf{A}) = f_{11}T_1(\mathbf{A}) + f_{22}T_2(\mathbf{B}-\mathbf{A})$ $+ f_{12}T_1(\mathbf{B}-\mathbf{A}) + f_{21}T_2(\mathbf{A})$

Average System-Wide Travel Time

 $T(\mathbf{A}) = f_{11}T_1(\mathbf{A}) + f_{22}T_2(\mathbf{B}-\mathbf{A}) + f_{12}T_1(\mathbf{B}-\mathbf{A}) + f_{21}T_2(\mathbf{A})$ Queueing

Average System-Wide Travel Time

 $T(\mathbf{A}) = f_{11} T_1(\mathbf{A}) + f_{22} T_2(\mathbf{B}-\mathbf{A}) + f_{12} T_1(\mathbf{B}-\mathbf{A}) + f_{21} T_2(\mathbf{A})$

How do we obtain the f_{ni} 's?

Consider a long time interval T

 f_{12} =(# requests that assign unit 1 to area 2)/ (total # requests answered)

#Total # requests answered = $(1-P_{11})\lambda T$

#Average # requests that are "server 1 to area 2" is $\lambda_2 TP_{10}$. Why?

Solution Herefore
$$f_{12} = (\lambda_2 T P_{10} / [1 - P_{11}]\lambda T) = {\lambda_2/(1 - P_{11})\lambda} P_{10}$$

How do we generalize this to *N* servers?

New York City EMS Hypercube

New York City EMS Hypercube

Rectangular City Example

Optimal Districting

"Dispatch the closest available server' is often not optimal, where 'optimal' implies minimizing mean travel time

May not be good for reducing workload imbalance either

₩With numerical example in book, the optimal boundary line is shifted to the right by 10/126 miles.

Boundary Line Comparison

#Equal travel time boundary line $ightarrow T(A_{w=1/2})=0.46246$ $ightarrow \Delta W = 0.05236$ #Optimal boundary line $ightarrow T(A_{w^*})=0.46166$ $ightarrow \Delta W = 0.04405$

Two server Loss Model: Boundary Line Result

%To minimize mean city-wide mean travel time:

* The optimal partitioning consists of a set of points within the region that is a constant travel time s₀ closer to facility 1 than to facility 2. (Carter, Chaiken, Ignall, 1972)

#Does our rectangular city example work
for this?

So: Optimal Partitioning

 $\alpha \equiv \lambda/2\mu$

 $\mu_1 = \mu_2$

 $S_0 = [2\alpha/(2\alpha+1)]\{T_2(B) - T_1(B)\}$

And what about the corner case?

The S₀ result is general

%Works for discrete grid
%One way streets
%General transportation network

∺Rick Jarvis, in an MIT Ph.D. thesis, generalized this to N servers