Networks: Lecture 1

Amedeo R. Odoni

November 15, 2006

* Thanks to Prof. R. C. Larson for some of the slides

General Comments

- From continuous to a more "discretized" travel environment
- Enormous literature and variety of problems
- Transportation and logistics, urban services just two of the major areas of applications
- Level of detail of model depends on problem
- Numerous interpretations of "nodes" ("points", "vertices") and "arcs" ("links", "edges")
- Will concentrate on routing and location problems
- Will assume that efficient shortest path algorithms are available

Outline and References

- Introduction
- Minimum Spanning Tree (MST)
- Chinese Postman Problem (CPP)
- Skim Sections 6.1 and 6.2, read Sections 6.3- 6.4.4 in Larson and Odoni
- Far more detailed coverage in (among others) Ahuja, R., T. L. Magnanti and J. B. Orlin, Network Flows, Prentice-Hall, 1993.

Network with Terminology

Examples of Nodes \& Arcs

Nodes/ Vertices/ Points Arcs/ Edges/ Links

- Street intersections
- Street segments
- Towns
- Cities
- Electrical junctions
- Project milestones
- Country roads
- Airplane travel time
- Circuit components
- Project tasks

Network Terminology

- $\mathrm{N}=$ sets of nodes
- $A=$ set of arcs
- G(N,A)
- Incident arc
- Adjacent nodes
- Adjacent arcs
- Path
- Degree of a node
- In-degree
- Out-degree
- Cycle or circuit
- Connected nodes
- Connected undirected graph
- Strongly connected directed graph
- Subgraph

Network Terminology - con't.

- Tree of an undirected network is a connected subgraph having no cycles
- A tree having t nodes contains (t-1) edges
- Spanning tree of $\mathbf{G}(N, A)$ is a tree containing all n nodes of N
- Length of a path S

$$
L(S)=\sum_{(i, j) \in S} l(i, j)
$$

- d(x,y), d(i,j)

Shortest Path Problem

- Find the shortest path (more generally, least cost path) between two nodes, starting at Node O and ending at Node D.
- Dijkstra's node labeling algorithm (essentially dynamic programming); one-to-all paths; all edge lengths are non-negative; O(n²).
- Floyd's algorithm; negative edge lengths OK (discovers negative cycles); all-to-all paths; non-obvious; O(n3).
- Numerous variations and extensions: all-to-one; critical edge; k-th shortest path; shortest path on stochastic networks; shortest path on stochastic and dynamic networks

Node Labeling Algorithm: Dijkstra

- Shortest path from a node
- $k=1$, start at origin node
- At the end of iteration k :
_ the set of k CLOSED NODES consists of the k closest nodes to the origin.
_ the label of each OPEN NODE adjacent to one or more closed nodes indicates our current 'best guess' of the minimal distance to that node.

Minimum Spanning Tree (MST) Problem

- Assume an undirected graph
- Problem: Find a shortest length spanning tree of $G(N, A)$.
- Why is this an important problem?
- If $|\mathrm{N}|=\mathrm{n}$, then each spanning tree contains ($n-1$) links.
- MST may not be unique

MST Example

MST

- Greedy algorithm works!
- Algorithm: Start at an arbitrary node. Keep connecting to the growing subtree the closest unattached node.
- Fundamental property: The shortest link out of any sub-tree (during the construction of the MST) must be a part of the MST

Proof of fundamental property

Proof by contradiction

Proof of fundamental property

Proof by contradiction

$\mathrm{MST}=\mathrm{T}_{1}+\mathrm{T}_{2}+$ (one connecting link)

Corollary

- In an undirected network G, the link of shortest length out of any node is part of the MST.

MST Example (continued)

MST Example (continued)

MST Example (continued)

MST Example: A Solution

MST Example: An Alternative Solution

MST vs. Steiner Problem in the Euclidean Plane

- MST: All links must be rooted in the node set, N , to be connected
- MST is an easy problem
- Steiner problem: Links can be rooted at any point on the plane
- The Steiner problem is, in general, very difficult

MST vs. Steiner: Example

Seattle

\bigcirc
San Diego

Kansas City	Seattle			
0		$	$	Kansas City
:---:				
0				
San Diego				

MST vs. Steiner: Example (2)

Equilateral Triangle

$$
\frac{L(\text { STEINER })}{L(M S T)}=\frac{\sqrt{3}}{2} \approx 0.87
$$

(~13\% savings)

Chinese Postman Problem

- Find the minimum length tour (or cycle) that "covers" every link of a network at least once
- Will look at the CPP on an undirected network

The CPP on undirected graphs: Background

- EULER TOUR: A tour which traverses every edge of a graph exactly once.
- If we can find an Euler tour on $G(N, A)$, this is clearly a solution to the CPP.
- The DEGREE of a node is the number of edges that are incident on this node.
- Euler's Theorem (1736): A connected undirected graph, $\mathbf{G}(\mathbf{N}, \mathrm{A})$, has an Euler tour iff it contains exactly zero nodes of odd degree. [If G(N, A) contains exactly two nodes of odd degree, then an Euler PATH exists.]

The number of odd degree nodes in a graph is always even!

1. Each edge has two incidences.
2. Therefore, the total number of incidences, P, is an even number.
3. The total number of incidences, P_{e}, on the even-degree nodes is an even number.
4. Therefore, the total number of incidences, P_{o}, on the odd-degree nodes ($P_{o}=P-P_{e}$) is an even number.
5. But P_{o} is the number of incidences on odddegree nodes. For P_{o} to be even, it must be that m, the number of odd-degree nodes, is also even.

Networks with Euler Tour or Path

Image by MIT OCW.

KÖNIGSBERG BRIDGES

Image by MIT OCW.

Euler's famous "test problem": the parade route

The Seven Bridges of Konigsberg

S = South Side
... reduced to a network problem

Seven Bridges of Konigsberg as a Network

Drawing an Euler Tour

- It is easy to draw manually an Euler tour on a network that has one. Just do not traverse an "isthmus", i.e., an edge whose erasure will divide the yet uncovered part of the network into two separate, non-empty sub-networks.

An Easy Chinese Postman Problem

CPP Example

The CPP Algorithm (Undirected Graph)

- BASIC IDEA: Take the given graph, $\mathbf{G}(\mathbf{N}, \mathrm{A})$, and add "dummy" edges to it, until G has no odd degree nodes. In adding edges, try to add as little length as possible to G.
STEP 1: Identify all m nodes of odd degree on $G(N, A)$. [Remember m is even.]
STEP 2: Find the minimum-cost, pairwise matching of the odd-degree nodes. [Apply the "non-bipartite matching" algorithm (a.k.a. "flower and blossom" of Ellis and Johnson (1972) - see Chapter 12 of Ahuja, Magnanti and Orlin.]

The CPP Algorithm (Undirected Graph) [continued]

STEP 3: Modify $\mathbf{G}(\mathbf{N}, \mathrm{A})$ by adding to it the set, M , of (dummy) edges corresponding to the minimum-cost pair-wise matching found in STEP 2. Call this augmented graph G^{\prime}.
$\left[G^{\prime}(N, A \cup M)\right]$
STEP 4: Find an Euler tour on G'. This tour is a solution to the CPP.

CPP Example (2)

CPP Example (3)

The Solution

- Pair-wise matches:

1. $\{A-D, E-B\}, " c o s t "=12$
2. $\{A-B, D-E\}, " c o s t "=16$
3. $\{A-E, B-D\}, " c o s t "=20$

- Select "1".
- Total CPP tour length $=48+12=60$
- A tour: $\{A, B, C, A, D, C, E, B, E, D, A\}$

Number of Matches

- Given m odd-degree nodes, the number of possible pair-wise matches is:

$$
(m-1) \cdot(m-3) \cdot \ldots \ldots \cdot 3 \cdot 1=\prod_{i=1}^{m / 2}(2 i-1)
$$

Minimize $\sum n(i, j) \cdot \ell(i, j) \quad[n(i, j)$ is the no. of $(i, j) \in A \quad$ times (i, j) is "covered"]

3,140 units of total length; 8 odd-degree nodes;

 105 possible pair-wise matching combinations

Optimal pair-wise matching can be found by inspection; 490 dummy edge units (double-covered); optimal CPP tour has length of 3,830 units

Solving Manually on a Graph

- Given a good "map", it is possible to solve manually, to near-optimality, large CPPs on planar graphs.
- KEY OBSERVATION: In a minimum-cost, pairwise matching of the odd degree nodes, no two shortest paths in the matching can have any edges in common.
- IMPLICATIONS:
_ Eliminate large no. of potential matches
_ Search only in "neighborhood" of each odddegree node

Solving Manually (2)

Related CPP Problems

- CPP on directed graphs can also be solved efficiently (in polynomial time) [Problem 6.6 in L+O]
- CPP on mixed graph is a "hard" problem [Papadimitriou, 1976]
- Many variations and applications:
_ Snow plowing
_ Street sweeping
_ Mail delivery => "multi-postmen"
_ CPP with time windows
_ Rural CPP

Applications

- Each of these problem types has been greatly refined and expanded over the years
- Each can be implemented via computer in complex operating environments
- The Post office, FedEx, truckers, even bicycled couriers use these techniques

