
1.204 Computer Algorithms in Systems Engineering

Spring 2010

Problem Set 2: Municipal Database

Due: 12 noon, Wednesday, February 24, 2010

1. Problem statement

You are given a realistic, though fictitious, database drawn from town census, postal,
telephone and other data for the town of Arlington, Massachusetts. This is in
Arlington1204.zip, a zip file containing a Microsoft SQL Server database,
Arlington1204.mdf. This database contains just a single table, Resident; it’s really just a
data file. The attributes are defined below.

1.	 Build a fully normalized data model, using Visual Paradigm’s entity-relationship
(data) model diagram.

a.	 Identify the entity names, primary and foreign keys, relationships and their
cardinality, and all attributes.

b.	 Your model does not have to define the data types and it need not define
whether nulls are allowed. (It’s best to do these but, to keep the time
commitment lower, they are not required.)

c.	 All data elements in the Residents table are at an individual person level,
though many should be represented at a household level. The major entities in
the Residents table are persons, households, services and set of domain
entities such as precincts, districts, etc. Examine the data from the Residents
data file to infer the system rules so that you can create the data model.

d.	 As you browse the Resident data file, resolve data inconsistencies arbitrarily
and simply. For example, if one member of a household has cable TV
(CATV) or fiber optic (FIOS) or gas service, the household has the service.

e.	 You must decide how to model landline phones; there may be zero or more
phones per household, and some may be associated with individuals within
the household. Choose a simple approach.

f.	 You are likely to have about 10 or 12 entities in your data model, with at least
one many-to-many relationship. The other relationships will be many-to-one
relationships.

g.	 Hand in the .vpp file as part of the zip file you submit for the homework.

2.	 Implement your data model in MS SQL Server, with all the data included in the
Arlington1204 database except as noted below.

a.	 Build the database following the data model you create in the first step of the
homework. Change the data model if it doesn’t model the actual data
properly. However, you may ignore inconsistencies and errors in the data, or
you may choose a simple approach to resolve the errors.

b.	 Include the queries and temporary tables that you used to construct the
database, even though you would normally delete them. Give each query a
descriptive name, and indicate the order in which they were executed by
starting their names with a, b, c, d, … or 1, 2, 3, 4, … Use SQL Server
comments for this; they start with --.

c.	 If there are transformations required to implement your data model that are
difficult (for example, involving parsing, or transformations that require
programming), do not implement them. Choose a simple approach.

d.	 Create appropriate primary and foreign keys, and relationships in the data.
e.	 Hand in the electronic version of the database, in the zip file, including the

.sql file with the queries that you wrote to implement it. Do not remove the
original Residents table or any temporary tables you may have constructed,
even though you normally would, to allow us to grade your assignment.

Hints:
a.	 You can create most of your tables through the SQL statement ‘SELECT

select_list INTO table_name FROM table_source WHERE search_condition.
Please see the Murach SQL Server book, which is online, for how to do this.
After the table is created, use the SQL Server MSE client to set its primary
key and possibly make other changes interactively. See the instructor for help
with this; we’ll try to do a short demo in class as well. Remember that
primary keys cannot have null values.

b.	 To create domain entities, use the SQL statement ‘SELECT DISTINCT
select_list INTO table_name FROM table_source WHERE search_condition.
Again, set the primary key with the SQL Server MSE client.

c.	 When creating relationships between tables in SQL Server, make sure that the
corresponding columns in both the tables have exactly the same data types.
For example, they may/must both be nvarchar(20): they must have the same
type and the same length. If you’ve used SELECT INTO statements to create
your tables, you will have consistent data types. You need to be careful with
any new attributes that you create.

d.	 For one or more tables in this homework, you will need to create a primary
key that is not one of the columns present in the table. You will need to use
the Identity option to create a primary key. Please see the Murach SQL Server
book, which is online, for how to do this.

e.	 While zipping the database, you will need to stop the SQL Server so that the
lock on the .mdf file is removed. The procedure for stopping SQL Server is
described in the “HowTo: Install SQL Server” document. Briefly: use the
SQL Server Configuration manager, right click on SQL Server Express and
select ‘Stop’. After copying, start SQL Server Express again.

3. Implement two interesting queries after you’ve built your database. You are free
to implement any queries you wish. For example:

a.	 How many households have CATV, FIOS and gas service in all three years?
b.	 How many households dropped CATV (or FIOS or gas) service from any year to

any other?

c. What is the average size of households with CATV service, by year?
Add the two queries at the end of the .sql file that you submit in part 2 above.

This is not a programming or data processing homework. The focus is on modeling
issues and core database concepts (entities, attributes, primary keys, foreign keys and
relationships), and their application to an actual problem. Don’t spend a lot of time in
mechanical manipulations; choose a simple approach, discard some offending data, or
contact the instructor to discuss how to get around any data problems you’re
encountering in your approach.

Resident table:

Lname: Last name, upper case
Fname: First name, upper case
Yr: Birth year (1800 if unknown)
Mo: Birth month
Day: Birth day
Midname: Middle name, upper case
Suffix: Name suffix (Jr, Sr, II, III, IV), upper case
Stnum: Street number
Stlet: Street letter (e.g., the ‘A’ in 12A)
Stname: Street name, upper case
Apartment: Apartment number or letters
Sex: M or F
Occ: Occupation as free form string
Dist: School district (4-10), geographical area in which household is located
Phone: Phone number (landline only; no mobile phones are in the data)
Pct: Precinct (1-21), another geographical area in which household is located
DB1: First year in database (0-9)
DBL: Last year in database (0-9)
CATV1,2,3: Cable TV subscriber (y) in years 3, 6, 9
Car_rte: Postal carrier route (01-70)
Fios1, 2, 3: Telephone fiber optic subscriber (y) in years 3, 6, 9
HH_num: Household ID, unique identifier for members of same household. Unique
street number, street letter, street name and apartment defines a household.
Ocd: Occupation category (defined string)
Gas1,2,3: Natural gas user (y) in years 3, 6, 9

SQL Code Aids
We provide two SQL examples that will help you find duplicates or children without
parents.

1. Find duplicates. To find duplicate household IDs in a household table:

SELECT Household.ID FROM Household
WHERE (Household.ID In (SELECT ID FROM Household GROUP BY ID
HAVING Count(*)>1))

ORDER BY Household.ID;

Modify this for any table in which you wish to check the intended primary key for
duplicates.

2.	 Find unmatched rows between a parent and child table. For example, find rows in
Resident for which there is no row in the Household table (e.g., we have residents
in household 733 but there is no row 733 in the household table):

SELECT Resident.ID

FROM Resident LEFT JOIN Household

ON Resident.ID = Household.ID

WHERE (Household.ID Is Null);

Modify this to find rows in any child table for which there is no corresponding
row in the parent table.

Turn In

1.	 Place a comment with your full name, Stellar username, and assignment number at
the beginning of the .sql and .vpp files in your solution.

2.	 Hand in the data model electronically on Stellar.
a.	 You must use the Visual Paradigm drawing tool.
b.	 Please make your model fit on one page if possible, no more than two pages

otherwise.
c.	 Please lay out your model so that it is clear: avoid relationship lines crossing

each other, place related entities near each other, etc., as much as possible.
d.	 The data model must include all entities, keys (primary and foreign),

attributes, and relationships (including their types, such as one-to-many).
Indicate keys explicitly for each entity. Include domain relations (validation
entities). You do not need to be careful about null, unique or data type for
attributes.

3.	 Hand in the database electronically on Stellar.

a.	 Turn in the queries that you wrote to create the database, saved in the client as
a .sql or .txt file. When you save your queries, please number them from 1 to
n, Thus, when you write a SQL statement, please comment it as '--9 CATV
table', for example. You don't need to write queries for tables you created
from scratch using the client.

b.	 Please zip the the database file (the .mdf file that SQL Server creates) and
upload it on to the 1.204 course (Stellar) Web server.

4.	 Place all of the files in your solution in a single zip file.

5. Submit this single zip file on the 1.204 Web site under the appropriate problem set
number. For directions see How To: Submit Homework on the 1.204 Web site.

6. Your solution is due at noon. Your uploaded files should have a timestamp of no later
than noon on the due date.

Penalties
•	 30 points off if you turn in your problem set after noon on Wednesday but before

noon on Friday, February 26. You have two no-penalty two-day (48 hour) late
submissions per term.

•	 No credit if you turn in your problem set after noon on Friday.

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

