
1.204 Lecture 6

Data structures: stacks, queues,
trees, dictionaries

Data structures

•	 Correct and efficient representation of data and applicable
rules
–	 Stack: last in, first out discipline
–	 Queue: first in, first out discipline

• Double-ended queue (deque): general line discipline
–	 Heap: priority queue discipline
–	 Tree:

•	 Binary search tree (BST): ordered data, using a key
•	 Heaps are represented using binary tree
•	 Many other tree variations (B-tree, quadtree, AVL tree…)

–	 Set:
•	 Disjoint sets of elements, modeled as forest: set of disjoint trees

–	 Graph/network:
•	 Set of nodes and arcs (with costs)

–	 (Arrays are a simple data structure but are not as efficient nor
do they ensure correctness)

1

Stacks

Stack s

4 = Capacity -1

3

Top

“a”

“c”

“b”

2 Push(“a”)

1 Push(“b”)Top
Push(“c”)0Top

“c”
Top -1 Pop()

Pop()
“b”

Using a Stack

public class StackTest {
public static void main(String args[]) {

int[] array = { 12, 13, 14, 15, 16, 17 };
Stack stack = new Stack();
for (int i : array) {

stack.push(i);
}
while (!stack.isEmpty()) {

int z= (Integer) stack.pop();
System.out.println(z);

}
}

}
// Output: 17 16 15 14 13 12

2

Stack, 1
import java.util.*;

public class Stack {

public static final int DEFAULT_CAPACITY = 8;

private Object[] stack;

private int top = -1;

private int capacity;

public Stack(int cap) {

capacity = cap;

stack = new Object[capacity];

}

public Stack() {

this(DEFAULT_CAPACITY);

}

Stack, 2

public boolean isEmpty() {

return (top == -1);

}

public void clear() {

top = -1;

}

3

Stack, 3

public void push(Object o) {

if (++top == capacity)

grow();

stack[top] = o;

}

private void grow() {

capacity *= 2;

Object[] oldStack = stack;

stack = new Object[capacity];

System.arraycopy(oldStack, 0, stack, 0, top);

}

Stack, 4
public Object pop()

throws EmptyStackException

{

if (isEmpty())

throw new EmptyStackException();

else {

return stack[top--];

}

}

// Java has Stack class that will be deprecated soon

// Java suggests using Deque for stack and queue

4

Stack uses and efficiency

• Applications
– Keep track of pending operations

• Tree branches not explored (branch and bound)
• Divide and conquer splits not completed/combined yet
• Hierarchical communications networks (e.g., MPLS)

– Physical stacks of items
– Expression evaluation (with precedence)

• Efficiency
– Pop() and push() are both O(1)

• Size of stack does not affect these methods
– Space complexity of stack is O(n)

Queues

A queue is a data structure to which you add new items at one
end and remove old items from the other.

1 2 43 ... nn-1n-2 n+1

Remove
items here

Add items
here

5

Queue

"a" "b" "c"

Front

Rear Rear Rear Rear

Front

Rear

"c" "d"

FrontUnused! Run out of room!

Queue

"c" "d"

Rear

Front

Wrap around!

6

Ring Queue

Front points to
first element.

Rear points to
rear element.

0

1
2 3

4

Cap’y-1

Rear

Front

Front

"b"

"c" "d"

"a"

"a"
"b"

Front

Queue

public class Queue {

private Object[] queue;

private int front;

private int rear;

private int capacity;

private int size = 0;

static public final int DEFAULT_CAPACITY= 8;

7

Queue Data Members

queue: Holds a reference to the ring array

front: If size>0, holds the index to the next
item to be removed from the queue

rear: If size>0, holds the index to the last
item that was added to the queue

capacity: Holds the size of the array referenced by queue

size: Always >=0. Holds the number of items on the queue

Queue Methods

public Queue(int cap) {
capacity = cap;
front = 0;
rear = capacity - 1;
queue= new Object[capacity];

}

public Queue() {
this(DEFAULT_CAPACITY);

}

public boolean isEmpty() {
return (size == 0);

}

public void clear() {
size = 0;
front = 0;
rear = capacity - 1;

}

8

Queue Methods

public void add(Object o) {

if (size == capacity)

grow();

rear = (rear + 1) % capacity;

queue[rear] = o;

size++;

}

public Object remove() {

if (isEmpty())

throw new NoSuchElementException();

else {

Object ret = queue[front];

front = (front + 1) % capacity;

size--;

return ret;

}
}

// See download code for grow() method and for QueueTest class

Queue uses and efficiency

• Queue applications:
– First in, first out lists, streams, data flows
– Buffers in networks and computers
– Physical queues
– Keep track of pending operations

• Tree branches not explored in branch-and-bound, etc.
– Label correcting shortest path algorithms

• Use a ‘candidate list’ queue that allows arbitrary insertions
• Queue efficiency:

– add() and remove() are O(1)
• Constant time, regardless of queue size

– Space complexity of stack is O(n)
• Where n is maximum queue size, not number of items processed

9

10

Tree definitions

Root: a
Degree (of node): number of subtrees
b:3, c:0, d:2

Leaf: node of degree 0: e, c
Branch: node of degree >0
Depth: max level in tree

Children: of a are b, c, d
Parent: of g is b
Siblings: children of same parent: b, c, d
Degree of tree: max degree of its nodes(3)
Ancestors: nodes on path to root:

g’s ancestors are b and a

Max nodes on level i= 2i

Max nodes in tree of depth k= 2k+1-1
Complete binary tree in array:
Parent[i]= i/2
LeftChild[i]= 2i
RightChild[i]= 2i+1

If root is node 0 (rather than 1):
Parent[i]= (i-1)/2
LeftChild[i]= 2i+1
RightChild[i]= 2i+2

a
db

gf ih

c

e

Level
(distance from root)
0

1

2

...

Binary tree definitions

1
32

54 76

Level
0

1

2

...

(full tree of depth k)

0
21

… …
43 65

Tree Traversal

•	 We call a list of a tree's nodes a traversal if it lists
each tree node exactly once.

•	 The three most commonly used traversal orders
are recursively described as:
–	 Inorder: traverse left subtree, visit current node,

traverse right subtree

–	 Postorder: traverse left subtree, traverse right subtree,

visit current node
–	 Preorder: visit current node, traverse left subtree,

traverse right subtree

Tree traversal examples

g

b x

d w z

vc

Inorder: b c d g v w x z

root

11

Tree traversal examples

g

b x

d w z

vc

Postorder: c d b v w z x g

root

Binary Search Trees

•	 There are many ways to build binary trees with
varying properties:
–	 In a heap or priority queue, the largest element is on top.

In the rest of the heap, each element is larger than its
children

–	 In a binary search tree, the left subtree has nodes
smaller than or equal to the parent, and the right subtree
has nodes bigger than or equal to the parent

•	 We saw that performing an inorder traversal of such a tree
visited each node in order

•	 We’ll build a binary search tree in this lecture and
a heap in the next lecture

12

Writing a Binary Search Tree

•	 We’ll build a Tree class:
–	 One data member: root
–	 One constructor: Tree()
–	 Methods:

• insert: build a tree, node by node
• inorder traversal
• postorder traversal
•	 (we omit preorder)
• find: whether an object is in the tree
• print tree

Writing a BST, p.2

•	 We also build a Node nested class inside Tree:
–	 Three data members: data, left, right

• data is a reference to an Object, so our Node is general

data

left right

Comparable

–	 Our data Objects must implement the Comparable interface,
which has one method:

int compareTo(Object other)

–	 compareTo returns:
•	 An int < 0 if (this < other)
•	 0 if (other equals this)
•	 An int > 0 if (this > other)

13

}

e:
ic Compa
ic Node lef
ic Node(

Writing a BST, p.3

–	 Node class also has a set of methods, all used by
corresponding methods in the Tree class:
• insertNode

• traverseInorder

• traversePostorder

• findNode

• printNode

–	 Methods are invoked on root node and then traverse the
tree as needed

Tree and Node Classes

Tree:
private Node root;
public Tree() {root=null;}
public void inorder() {…}
public void postorder() {…
public void insert(o) {…}
public boolean find(o) {…}
public void print() {…}

Nod
publ rable data;
publ t, right;
publ o) {data=o;}
public void traverseInorder() {…}
public void traversePostorder() {…}
public void insertNode(n) {…}
public boolean findNode(o) {…}
public void printNodes() {…}

Tree methods invoked on
Tree object; they call Node
methods invoked on the
root node object

root r

Tree t:

14

Tree class

public class Tree {

private Node root;

public Tree() {

root= null; }

public void inorder() {

if (root != null) root.traverseInorder(); }

public void postorder() {

if (root != null) root.traversePostorder(); }

public void insert(Comparable o) {

Node t= new Node(o);

if (root==null)

root= t;

else

root.insertNode(t); }

Tree class, p.2

public boolean find(Comparable o) {

if (root== null)

return false;

else

return root.findNode(o);

}

public void print() {

if (root != null)

root.printNodes();

}

15

Node class: data, constructor

private static class Node {

public Comparable data;

public Node left;

public Node right;

public Node(Comparable o) {

data= o;

left= null;

right= null;

}

Traversal

public void traverseInorder() {

if (left != null) left.traverseInorder();

System.out.println(data);

if (right != null) right.traverseInorder();

}

public void traversePostorder() {

if (left != null) left.traversePostorder();

if (right != null) right.traversePostorder();

System.out.println(data);

}

16

Node class, insertNode

public void insertNode(Node n) {

if (data.compareTo(n.data) > 0) {

if (left==null)

left= n;

else

left.insertNode(n);

}

else {

if (right == null)

right= n;

else

right.insertNode(n);

}

}

// No ties allowed

17

insert() in Action

18

11 25

7 16 19

12 17

32

29

3327

insert(20)

null

parent at end
of failed search

20

new node

8

find() in Action

18

11 25

7 16 19

12 17

32

29

3327

1st iteration

2nd iteration

find(19)

8

Find

public boolean findNode(Comparable o) {

if (data.compareTo(o) > 0) {

if (left== null)

return false;

else

return left.findNode(o);

}

else if (data.compareTo(o) < 0) {

if (right == null)

return false;

else

return right.findNode(o);

}

else // Equal

return true;

}

18

Keys and Values

•	 If binary search trees are ordered, then they must be
ordered on some key possessed by every tree node.

•	 A node might contain nothing but the key, but it's often
useful to allow each node to contain a key and a value.

•	 The key is used to look up the node. The value is extra data
contained in the node indexed by the key.

Maps/Dictionaries

•	 Such data structures with key/value pairs are usually called
maps or sometimes dictionaries

•	 As an example, consider the entries in a phone book as
they might be entered in a binary search tree. The
subscriber name, last name first, serves as the key, and the
phone number serves as the value.

19

Maps

•	 Implementing tree structures with keys and values is a
straightforward extension to what we just did. The Node
contains the same members:
–	 Data, a reference to a Comparable object with key and value
–	 Left
–	 Right

•	 We add or modify methods to set or get the values
associated with the keys
–	 No change in logic

•	 Map example on next slides
–	 This could be improved by having find() return the Object

instead of a boolean whether it was found
–	 You’d then have to check if the object is null, etc.
–	 These are straightforward changes, but we show the simplest

implementation here

Phone class

public class Phone implements Comparable {
private String name; // Name of person (key)
private int phone; // Phone number (value)

public Phone(String n, int p) {

name= n;

phone= p;

}

public int compareTo(Object other) {
Phone o= (Phone) other;
return this.name.compareTo(o.name); // String compare

}

public String toString() {

return("Name: "+ name +" phone: "+ phone);

}
}
// This will be the object pointed to by ‘data’ in Node

20

MapTest

public class MapTest {
public static void main(String[] args) {

Tree z= new Tree();

z.insert(new Phone("Betty", 4411));

z.insert(new Phone("Quantum", 1531));

z.insert(new Phone("Thomas", 6651));

z.insert(new Phone("Darlene", 8343));

z.insert(new Phone("Alice", 6334));

z.print();

System.out.println("Inorder");

z.inorder();

System.out.println("Postorder");

z.postorder();

System.out.println("Search for phone numbers");

System.out.println("Find Betty? " +

z.find(new Phone("Betty", -1)));
System.out.println("Find Thomas? " +

z.find(new Phone("Thomas", -1)));
System.out.println("Find Alan? " +

z.find(new Phone("Alan", -1)));
}

} // TreeTestGeneric and TreeGeneric use Java 1.6 generics

Tree uses and efficiency

•	 Applications
–	 Data storage and search
–	 Optimization: search discrete alternatives (DP, B-and-B)
–	 Priority queues
–	 Shortest paths, spanning trees on graphs
–	 Basis in network simplex

•	 Efficiency
–	 insert(), delete(), find() are O(lg n) average case

• We don’t cover delete()—it’s straightforward but tedious
– Degenerate trees are O(n) but can be avoided with care

• Never build a tree in sorted order
• Choose a non-key field to sort input to build the tree

– AVL, red-black trees rebalance to avoid worst case
•	 Most of our trees will keep parent node, not

children this term

21

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

