
1.204 Lecture 14 

Dynamic programming:

Job scheduling
Job scheduling 

Dynamic programming formulation 

•	 To formulate a problem as a dynamic program: 
–	 Sort by a criterion that will allow infeasible combinations 

tto bbe elili  mi tinatedd effiffi  ci tl  iently 
–	 Choose granularity (integer scale or precision) that 

allows dominated subsequences to be pruned 
•	 Choose coarsest granularity that works for your problem 

–	 Use dynamic programming in fairly constrained 

problems with tight budgets and bounds


•	 If problem is not highly constrained, you will need to apply
heuristic constraints to limit the search space 

–	 Choose between multistage graph, set or custom 
implementation 

• Decide if a sentinel is helpful in set implementation 
–	 Experiment 

•	 Every problem is a special case, since DP is O(2n) 
•	 Can you find special structure that makes your DP fast? 
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DP examples 

•	 This lecture shows another example 
–	 Job scheduling, using multistage graph 

• Example of sorting feasibility pruning used effectively Example of sorting, feasibility, pruning used effectively 
•	 Example of good software implementation 

–	 No graph data structure built; solution tree built directly 
–	 Good but not ideal representation of tree/graph nodes; some 

nodes are created but not used 
–	 We don’t even consider 2-D arrays, linked lists, etc., which do not 

scale at all, but which are popular in many texts. Crazy☺ 

•	 Good DP codes are somewhat hard to write; there is much 
detail to handle and many lurking inefficiencies to combatdetail to handle and many lurking inefficiencies to combat 

–	 We will not dwell on the code details, but they are important 

–	 Knapsack problem in next lecture, using sets 
•	 Example of sorting, feasibility, pruning in different framework 
•	 Multistage graph doesn’t work: too many nodes per stage 
•	 Object oriented design is big improvement over past codes 

–	 Be careful: many texts have zillions of inefficient, tiny objects 

Job scheduling dynamic program 

•	 Each jjob to be scheduled is treated as a pprojject with a 
profit, time required, and deadline 
–	 We have a single machine over a given time (resource) 
–	 Use multistage graph formulation from last lecture 

•	 Algorithm pseudocode: 
–	 Sort jobs in deadline order (not profit order as in greedy) 
–	 Build source node for job 0 
–	 Consider each job in deadline order: 

•	 Build set of nodes for Build set of nodes for nextnext stage (job) stage (job) for each state (time spent) for each state (time spent) 
•	 For current job: 

–	 Build arc with no time assigned to job 
–	 If time so far + current job time <= job deadline, build arc with job done 

–	 Build sink node for artificial last job 
–	 Trace back solution using predecessor nodes 
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Job scheduling algorithm

• We will label every node in the graph that we encounter y g p
with its profit and time used
– If we find a better path to that node, we update its profit and 

time labels
– This is exactly the same as the shortest path label correcting 

algorithm
• We know this algorithm runs fast

– The issue is then:  how big is the graph?
• A smart formulation keeps the graph size at some polynomial 

b d i th bl ibound in the problem size
• Otherwise, the graph becomes exponentially large and this is why 

dynamic programming worst case is exponential
– If our model is good, we also need a good implementation

• A bad implementation can make a good model run very slowly
• (A good implementation can’t really speed up a bad model…)

Job scheduling example

Job Deadline Profit Time
0 1 39 10 1 39 1
1 2 90 1
2 2 88 2
3 2 20 1
4 3 37 3
5 3 25 2
6 4 70 1

4 time units of machine time available.



Job scheduling graph: forward 
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Job scheduling graph: backward 
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Job class 
public class Job implements Comparable { 

int jobNbr; // Package access 

int deadline; // Package access 

int profit; // Package access 

int time; // Package access 

public Job(int j, int d, int p, int t) {p  (  j,  ,  p,  )  {  

jobNbr= j; 

deadline= d; 

profit= p; 

time= t; 

} 

public int compareTo(Object other) { 

Job o= (Job) other; 

if (deadline < o.deadline) 

return -11; 

else if (deadline > o.deadline) 

return 1; 

else 

return 0; 

} 

public String toString() { 

return("J: "+ jobNbr+" D: "+ deadline+" P: "+ profit+" T: "+ time); 

} } 

JobScheduler 

public class JobScheduler { 

private Job[] jobs;   // Input set of jobs to schedule 

private int nbrJobs; ////  Number of inpput jjobs p ; 

private int endTime;  // Latest end time of job (=max resource) 

private int[] path;   // List of nodes in the optimal solution 

private int jobsDone; // Output: total number of jobs 

private int totalProfit; // Output 

private int nodes; // Nodes generated in DP graph 

private int[] nodeProfit; // Profit of jobs prior to this node 

private int[] nodeTime; // Time spent on jobs prior to node 

i  i t[] d // P // Predecessor nodde with best profitfitprivate int[] pred; d ith b 

private int stageNodes; // Difference in node numbers from 

// one stage to next 
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JobScheduler constructor, jsd() 
public JobScheduler(Job[] j, int e) { 

jobs = j; 

endTime = e; 

nbrJobs= jobs.length; 

path= new int[nbrJobs+1]; 

nodes= (nbrJobs-1)*(endTime+1)+2; 

// nodes= stages*states + source, sink 

nodeProfit= new int[nodes]; 

nodeTime= new int[nodes]; 

pred= new int[nodes]; 

for (int i= 0; i < nodes; i++) 

pred[i]= -1;

stageNodes= endTime+1;
stageNodes= endTime+1; 

} 

public void jsd() { 

buildSource(); 

buildCenter(); 

buildSink(); 

backPath(); 

} 

buildSource() 

private void buildSource() { 

nodeProfit[0]= 0; // Source is node 0 

nodeTime[0]= 0;;[ ]  

// Treat stage 0 as special case because it has only 1 node 

// If job not in solution set (0 time and profit). 
nodeProfit[1]= 0;

nodeTime[1]= 0;

pred[1]= 0;


// If job feasible 

if (jobs[0].time <= jobs[0].deadline) {

int toNode= 1+ jobs[0] time;
int toNode= 1+ jobs[0].time; 

nodeProfit[toNode]= jobs[0].profit; 

nodeTime[toNode]= jobs[0].time; 

pred[toNode]= 0;

}


} 
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buildCenter() 
private void buildCenter() { 

for (int stage= 1; stage < nbrJobs-1; stage++) { 

// Generate virtual arcs 

for (int node=(stage-1)*stageNodes+1; node<= stage*stageNodes;node++) 

if (pred[node] >= 0) { 

// If job not in solution,build arc if it is on optimal sequence 

if (nodeProfit[node] >= nodeProfit[node+stageNodes]) { 

nodeProfit[node+stageNodes]= nodeProfit[node]; 

nodeTime[node+stageNodes]= nodeTime[node]; 

pred[node+stageNodes]= node; 

} 

// If job feasible build virtual arc if it is on optimal sequence 

if (nodeTime[node]+jobs[stage].time <= jobs[stage].deadline) { 

int nextNode= node + stageNodes + jobs[stage] time;int nextNode= node + stageNodes + jobs[stage].time; 

if (nodeProfit[node]+jobs[stage].profit>=nodeProfit[nextNode]){ 

nodeProfit[nextNode]= nodeProfit[node]+ jobs[stage].profit; 

nodeTime[nextNode]= nodeTime[node]+ jobs[stage].time; 

pred[nextNode]= node; 

} 

} 

} 

} } 

buildSink() 
private void buildSink() { 

int stage= nbrJobs - 1; 

int sinkNode= (nbrJobs-1)*stageNodes + 1; 

for (int node=(stage-1)*stageNodes+1; node <= stage*stageNodes; node++) 

if (pred[node] >= 0) {

// Generate only single best virtual arc from previous node

// Job feasible

if (nodeTime[node] + jobs[stage].time <= jobs[stage].deadline) {

// Job in solution 

if (nodeProfit[node]+ jobs[stage].profit >= nodeProfit[sinkNode]) { 

nodeProfit[sinkNode]= nodeProfit[node]+ jobs[stage].profit; 

nodeTime[sinkNode]= nodeTime[node]+ jobs[stage].time; 

pred[sinkNode]= node; 

}

}
}

// Job not in solution

if (nodeProfit[node] >= nodeProfit[sinkNode]) {

nodeProfit[sinkNode]= nodeProfit[node];

nodeTime[sinkNode]= nodeTime[node];

pred[sinkNode]= node;


} 

} 

} 
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backPath(), outputJobs() 

private void backPath() { 

// Trace back predecessor nodes from sink to source 

path[nbrJobs]= (nbrJobs-1)*stageNodes + 1; // Sink node 

for (int stage= nbrJobs-1; stage >= 1; stage--) 

path[stage]= pred[path[stage+1]]; 

} 

public void outputJobs() { 

System.out.println("Jobs done:"); 

for (int stage= 0; stage < nbrJobs; stage++) { 

if (nodeProfit[path[stage]] != nodeProfit[path[stage+1]]) { 

System.out.println(jobs[stage]); 

jobsDone++;jobsDone++;

totalProfit += jobs[stage].profit;


}

}

System.out.println("\nJobs done: " + jobsDone + 


" total profit: "+ totalProfit); 

} 

main() 

public static void main(String[] args) { 

Job[] jobs= new Job[7]; 

jobs[0]= new Job(0, 1, 39, 1); 

jobs[1]= new Job(1, 2, 90, 1); 

jobs[2]= new Job(2, 2, 88, 2); 

jobs[3]= new Job(3, 2, 20, 1); 

jobs[4]= new Job(4, 3, 37, 3); 

jobs[5]= new Job(5, 3, 25, 2); 

jobs[6]= new Job(6, 4, 70, 1); 

int endTime= 4; 

Arrays.sort(jobs); // In deadline order 

JobScheduler j= new JobScheduler(jobs, endTime); 

j jsd();j.jsd(); 

j.outputJobs(); 

} 
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vehicle fleet maintenance

Job scheduling DP complexity 

•	 Complexity is minimum of: 
–	 O(nM), where 

•	 n is number of jobs (stages) 
•	 M is min(∑pi, ∑ti, di) 

–	 O(2n) 
•	 Intuitively, if no pruning occurs and the time 

resource is large, the number of nodes can 
double at each stage (job)double at each stage (job) 
–	 This leads to O(2n) complexity 

•	 If the times, deadlines or profits are constrained, 
many fewer nodes are generated 
–	 This leads to O(nM) complexity 

Example uses of job scheduling 

•	 Transportation vehicle fleet maintenanceTransportation 
–	 Many vehicles, many jobs with priority and benefit 

•	 Routine or scheduled maintenance 
•	 Accident repair 
•	 Upgrades 

•	 Manufacturing facility scheduling 
–	 Marketing requirement for production of products with 

exppected pprofit marggins,, deadlines and times 
–	 Facilities making a range of products (e.g., in China) 

•	 Robotics: control of real-time tasks 
•	 Taxi dispatch (with extensions) 
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Other dynamic programming examples 

•	 Most resource allocation pproblems are solved with linear 
programming 
–	 Sophisticated solutions use integer programming now 
–	 DP is used with nonlinear costs or outputs, often in process 

industries (chemical, etc.) with continuous but complex and 
expensive output 

–	 DP for resource allocation has ‘dimensionality curse’ when
there is more than one resource: 

•	 Have triplets of (cost, time, profit) for example, instead of pair of 
(cost profit) (cost, profit) 

•	 Our job scheduling DP is a nice exception 
•	 Dynamic programming is also used in: 

–	 Production control 
–	 Markov models of systems 
–	 Financial portfolio management (risk management) 
–	 Multi player game solutions! 

Reliability design 

D1 D2	 Dn-1 D0 … 

D0 
D0 
D 

D1 
D1 

… 
D0 

D1 

D2 Dn-1 D2 Dn-1 D2 D2	 DDn-1 D2 

Multiple devices are used at each stage. Monitors determine 
which devices are functioning properly. We wish to obtain 
maximum reliability within a cost constraint 
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Reliability design formulation

• If a stage i contains mi devices Di:
Probability that all have a fault = (1 r )mi– Probability that all have a fault = (1-ri)mi 

– Reliability of stage yi= 1 – (1-ri)mi 

• We want to maximize reliability= 
– Subject to a cost constraint: 

∏ −−
n

m
i

ir ))1(1(

i td1≥

≤∑
n

ii Cmc

– We need a more flexible representation: sets (but of a 
different sort that our Set class)

integerand,1≥im

Reliability design example

Device  D0 D1 D2

Device type Input buffer Processor Output buffer

Cost $300 $150 $200 

Reliability 0.9 0.8 0.5

• Maximum cost= $1050
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Reliability design conceptual graph 
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Reliability DP needs different data structure 
•	 Explosion of number of nodes 
•	 Dominance is a more general concept than label 

correctioncorrection 
–	 Nodes with lower reliability but higher cost are pruned 
–	 This is necessary to prune most dynamic programming 

graphs 
•	 Heuristics are usually used 

• Asymptotic analysis is not very helpful any more 
•	 Most pproblems are O((min((  g  grapph size,, 2n)) )) 
•	 Approaches with similar worst cases can have very 

different actual running times. Must experiment. 
•	 Next time we’ll cover the set implementation for 

dynamic programming 
–	 We get rid of the nodes as well as the graph! 
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Things to notice in this formulation 

•	 Sorting 
–	 We didn’t sort in the example, but in real problem it’s always 

th d iworth doing 
– Almost always sort by benefit/cost ratio to get dominance 

•	 In this problem, sort by failure probability/cost 
•	 Having redundancy in cheap components with high failure rate is 

likely to be the most effective strategy 
– Sorting replaces many ad-hoc heuristics, gives same effect 

•	 There is no sink node 
–	 There are tricks to avoid solving the last stage—see text see textThere are tricks to avoid solving the last stage 

•	 Heuristics 
–	 Prune at each stage based on benefit/cost ratio. Eliminate the states with 

small improvements over the preceding state 
–	 Load ‘obvious’ solution elements into the source node via heuristic 
–	 E.g in knapsack, load first 50 of expected 100 items in profit/weight order 
–	 If you need to do these things, branch and bound is better approach 
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