1.204 Lecture 14

Dynamic programming:
Job scheduling

Dynamic programming formulation

To formulate a problem as a dynamic program:

— Sort by a criterion that will allow infeasible combinations
to be eliminated efficiently

— Choose granularity (integer scale or precision) that
allows dominated subsequences to be pruned

« Choose coarsest granularity that works for your problem

— Use dynamic programming in fairly constrained

problems with tight budgets and bounds

« If problem is not highly constrained, you will need to apply
heuristic constraints to limit the search space

— Choose between multistage graph, set or custom
implementation
« Decide if a sentinel is helpful in set implementation
— Experiment
» Every problem is a special case, since DP is O(2")
< Can you find special structure that makes your DP fast?

DP examples

* This lecture shows another example

— Job scheduling, using multistage graph
- Example of sorting, feasibility, pruning used effectively
« Example of good software implementation
— No graph data structure built; solution tree built directly

— Good but not ideal representation of tree/graph nodes; some
nodes are created but not used

— We don’t even consider 2-D arrays, linked lists, etc., which do not
scale at all, but which are popular in many texts. Crazy©®

* Good DP codes are somewhat hard to write; there is much
detail to handle and many lurking inefficiencies to combat
— We will not dwell on the code details, but they are important
— Knapsack problem in next lecture, using sets
« Example of sorting, feasibility, pruning in different framework
¢ Multistage graph doesn’t work: too many nodes per stage
« Object oriented design is big improvement over past codes
— Be careful: many texts have zillions of inefficient, tiny objects

Job scheduling dynamic program

Each job to be scheduled is treated as a project with a
profit, time required, and deadline
— We have a single machine over a given time (resource)
— Use multistage graph formulation from last lecture

Algorithm pseudocode:

— Sort jobs in deadline order (not profit order as in greedy)
Build source node for job 0
Consider each job in deadline order:

- Build set of nodes for next stage (job) for each state (time spent)

* For current job:
— Build arc with no time assigned to job
— If time so far + current job time <= job deadline, build arc with job done

Build sink node for artificial last job
— Trace back solution using predecessor nodes

Job scheduling algorithm

We will label every node in the graph that we encounter
with its profit and time used

If we find a better path to that node, we update its profit and
time labels
This is exactly the same as the shortest path label correcting
algorithm

* We know this algorithm runs fast
The issue is then: how big is the graph?

* A smart formulation keeps the graph size at some polynomial
bound in the problem size

» Otherwise, the graph becomes exponentially large and this is why
dynamic programming worst case is exponential

If our model is good, we also need a good implementation
* A bad implementation can make a good model run very slowly
* (A good implementation can’t really speed up a bad model...)

Job scheduling example

Job Deadline Profit Time

0 1 39 1
1 2 90 1
2 2 88 2
3 2 20 1
4 3 37 3
5 3 25 2
6 4 70 1

4 time units of machine time available.

Job scheduling graph:-forward

00 g grap 01 06

1,0 E20=0 V&Y E3,0=0 '
1 (’) /6\ (’) 1

E| 21)=g 0
E(2,0)=0

V pred v(1.4) V(2,4) V(3.4)
2
2
|

Stage:
0 1 3
| Job 0 decision | Job 1 decision Job 2 decision |
Profit: 39 Profit: 90 Profit: 88
Time: 1 Time: 1 Time: 2
Deadline: 1 Deadline: 2 Deadline: 2

Job scheduling graph:-backward
01

0
E(2,0)=0 E3,0=0 VY

1 6 11

i ‘ _

390 ‘::'. 907

\\9\/ E 2: 1):90 \/ , e7\\0e Y ;
< g E(3,0)=0 1

~ - 3

13
V(1,3) V(2,3) V(%)
V(1,4) V(2,4) V(3.4)
Stage: @
0 1 2 3
| Job 0 decision | Job 1 decision | Job 2 decision |
Profit: 39 Profit: 90 Profit: 88
Time: 1 Time: 1 Time: 2

Deadline: 1 Deadline: 2 Deadline: 2

Job class

public class Job implements Comparable {

int jobNbr; // Package access
int deadline; // Package access
int profit; // Package access
int time; // Package access

public Job(int j, int d, int p, int t) {
jJobNbr= j;
deadline= d;
profit= p;
time= t;
3
public int compareTo(Object other) {
Job o= (Job) other;
if (deadline < o.deadline)
return -1;
else if (deadline > o.deadline)
return 1;
else
return O;
3
public String toString(Q {

return("J: "'+ jobNbr+" D: "+ deadline+" P: "+ profit+" T: "+ time);

23

JobScheduler

public class JobScheduler {
private Job[] jobs; // Input set of jobs to schedule
private Int nbrJobs; // Number of input jobs
private int endTime; // Latest end time of job (=max resource)
private int[] path; // List of nodes in the optimal solution
private int jobsDone; // Output: total number of jobs
private int totalProfit; // Output

private int nodes; // Nodes generated in DP graph
private int[] nodeProfit; // Profit of jobs prior to this node
private int[] nodeTime; // Time spent on jobs prior to node
private int[] pred; // Predecessor node with best profit
private int stageNodes; // Difference in node numbers from

// one stage to next

JobScheduler constructor, jsd()

public JobScheduler(Job[] j, int e) {
jobs = j;
endTime = e;
nbrJobs= jobs.length;
path= new int[nbrJobs+1];
nodes= (nbrJobs-1)*(endTime+1)+2;
// nodes= stages*states + source, sink
nodeProfit= new int[nodes];
nodeTime= new int[nodes];
pred= new int[nodes];
for (int i= 0; 1 < nodes; i++)

pred[i]= -1;

stageNodes= endTime+1;

3

public void jsdQ {
bui ldSource(Q);
buildCenter(Q;
buildSink(Q;
backPath(Q);

buildSource()

private void buildSource() {
nodeProfit[0]= O; // Source is node O
nodeTime[0]= O;

// Treat stage 0 as special case because it has only 1 node

// 1T job not in solution set (0O time and profit).
nodeProfit[1]= O;
nodeTime[1]= O;
pred[1]= O;

// 1T job feasible

if (jobs[0]-time <= jobs[0].deadline) {
int toNode= 1+ jobs[O].time;
nodeProfit[toNode]= jobs[0].profit;
nodeTime[toNode]= jobs[0].time;
pred[toNode]= O;

buildCenter()

private void buildCenter() {
for (int stage= 1; stage < nbrJobs-1; stage++) {

// Generate virtual arcs
for (int node=(stage-1)*stageNodes+1; node<= stage*stageNodes;node++)
if (pred[node] >= 0) {
// 1T job not in solution,build arc if it is on optimal sequence
iT (nodeProfit[node] >= nodeProfit[node+stageNodes]) {
nodeProfit[node+stageNodes]= nodeProfit[node];
nodeTime[node+stageNodes]= nodeTime[node];

pred[node+stageNodes]= node;

3
// 1T job feasible build virtual arc if it is on optimal sequence
iT (nodeTime[node]+jobs[stage]-time <= jobs[stage]-deadline) {
int nextNode= node + stageNodes + jobs[stage]-time;
iT (nodeProfit[node]+jobs[stage]-profit>=nodeProfit[nextNode]){
nodeProfit[nextNode]= nodeProfit[node]+ jobs[stage]-profit;
nodeTime[nextNode]= nodeTime[node]+ jobs[stage]-time;

pred[nextNode]= node;

}

}

13

buildSink()

private void buildSinkQ) {

int stage= nbrJdobs - 1;

int sinkNode= (nbrJobs-1)*stageNodes + 1;
<= stage*stageNodes; node++)

for (int node=(stage-1)*stageNodes+1; node

if (pred[node] >= 0) {
// Generate only single best virtual arc from previous node
// Job feasible
jobs[stage] -deadline) {

if (nodeTime[node] + jobs[stage]-time <=

// Job in solution
if (nodeProfit[node]+ jobs[stage]-profit >= nodeProfit[sinkNode]) {

nodeProfit[sinkNode]l= nodeProfit[node]+ jobs[stage].profit;
nodeTime[sinkNode]= nodeTime[node]+ jobs[stage]-time;

pred[sinkNode]= node;

3

3

// Job not in solution

if (nodeProfit[node] >= nodeProfit[sinkNode]) {
nodeProfit[sinkNode]= nodeProfit[node];
nodeTime[sinkNode]= nodeTime[node];
pred[sinkNode]= node;

}
}
}

backPath(), outputJobs()

private void backPathQ) {
// Trace back predecessor nodes from sink to source
path[nbrJdobs]= (nbrJobs-1)*stageNodes + 1; // Sink node
for (int stage= nbrJobs-1; stage >= 1; stage--)
path[stage]= pred[path[stage+1]];
}

public void outputdobsQ {
System.out.printIn(*'Jobs done:");
for (int stage= 0; stage < nbrJobs; stage++) {
if (nodeProfit[path[stage]] '= nodeProfit[path[stage+1]]) {
System.out.printin(jobs[stage]);
jobsDone++;
totalProfit += jobs[stage]-profit;
}
}

System.out.printIn(""\nJobs done: " + jobsDone +
" total profit: "+ totalProfit);

main()

public static void main(String[] args) {
Job[] jobs= new Job[7]:
jobs[0]= new Job(0, 1, 39, 1);
jobs[1]= new Job(1, 2, 90, 1);
jobs[2]= new Job(2, 2, 88, 2);
jobs[3]= new Job(3, 2, 20, 1);
jobs[4]= new Job(4, 3, 37, 3);
jobs[5]= new Job(5, 3, 25, 2);
jobs[6]= new Job(6, 4, 70, 1);
int endTime= 4;

Arrays.sort(jobs); /7 In deadline order
JobScheduler j= new JobScheduler(jobs, endTime);
J-3sdO:

Jj -outputJobs();

Job scheduling DP complexity

Complexity is minimum of:
— O(nM), where
* nis number of jobs (stages)
e Mis min(3p;, >t;, d))
— 0(2n)
Intuitively, if no pruning occurs and the time
resource is large, the number of nodes can
double at each stage (job)
— This leads to O(2") complexity
If the times, deadlines or profits are constrained,
many fewer nodes are generated
— This leads to O(nM) complexity

Example uses of job scheduling

Transportation vehicle fleet maintenance
— Many vehicles, many jobs with priority and benefit
* Routine or scheduled maintenance
¢ Accident repair
* Upgrades
Manufacturing facility scheduling

— Marketing requirement for production of products with
expected profit margins, deadlines and times

— Facilities making a range of products (e.g., in China)
Robotics: control of real-time tasks
Taxi dispatch (with extensions)

Other dynamic programming examples

¢ Most resource allocation problems are solved with linear
programming
— Sophisticated solutions use integer programming now

— DP is used with nonlinear costs or outputs, often in process
industries (chemical, etc.) with continuous but complex and
expensive output

— DP for resource allocation has ‘dimensionality curse’ when
there is more than one resource:
* Have triplets of (cost, time, profit) for example, instead of pair of
(cost, profit)
e Our job scheduling DP is a nice exception
* Dynamic programming is also used in:
— Production control
— Markov models of systems
— Financial portfolio management (risk management)
— Multi player game solutions!

Reliability design

D, —» D, —» D, [—>wss| D, —>

D
D, 2 D4
D, [31 — gz —Dwas| D, [
Do 1 DZ n-1
2

Multiple devices are used at each stage. Monitors determine
which devices are functioning properly. We wish to obtain
maximum reliability within a cost constraint

10

Reliability design formulation

 If a stage i contains m; devices D;:
— Probability that all have a fault = (1-r;)™
— Reliability of stage y;= 1 — (1-r;)™

« We want to maximize reliability= [[(@-@-r)™)
— Subject to a cost constraint: n

D> em <C
m; >1, and integer

— We need a more flexible representation: sets (but of a
different sort that our Set class)

Reliability design example

Device DO D1 D2

Device type Input buffer Processor Output buffer
Cost $300 $150 $200
Reliability 0.9 0.8 0.5

* Maximum cost= $1050

11

Reliability design conceptual graph

)

®

Infeasible

® ® ® ©

Max = $700
Must have at
least 1 D1, D2
Rel Pred @
Stage:
0 1 2
| D 0 decision | D 1 decision | D 2 decision
Cost: $300 Cost: $150 Cost: $200
Reliability: 0.9 Reliability: 0.8 Reliability: 0.5
Reliability design conceptual graph
0.90]) 01201)
V DU V(2,450
2 E(1,1)=.8 ’
o 1) ® @
9-10.99 0 E 0.864 1
o vtg00 o 1'2)=-9s)
00 Em,’l\‘“ 2 %9 @
0.9 E 1,1)=8 N9
0 0.999 0 - 2 0.892 1
(0,3)=0.9 \ , V(2,)
6
Infeasible Gay 8 @
Max = $700 39
Must have at
least 1 D1, D2
easible
Max = $850
Must have at
-Rel Pred least 1 D1, D2 @
Stage:
0 1 2
| D 0 decision | D 1 decision | D 2 decision
Cost: $300 Cost: $150 Cost: $200
Reliability: 0.9 Reliability: 0.8 Reliability: 0.5

12

Reliability design conceptual graph
V(1,300) E(1)=8 V(2450)
®

1) @
)
N°70.990 E, .864 1
oY (1,600 N 1’2)=-96)
'((?0% @E\Om,og 2 11 7,3§9 @
0)<Eo ey A00920 0)=8 2% [0.892 1
4 =0.9] V !)
$
Infeasible /7:2/\ 8 @
Max = $700 \'95 0.79Z22
r:::: :‘T:;’f, ath ominated-label correction
easible
Max = $850
Must have at
Rel Pred least 1 D1, D2 ®
Stage:
0 1 2
| D 0 decision | D 1 decision | D 2 decision
Cost: $300 Cost: $150 Cost: $200
Reliability: 0.9 Reliability: 0.8 Reliability: 0.5
Reliability design concep graph
090] 0.72
\/
:300) E(1,1)=.8
o
Q 0990
o7 V(1600 12595
00| <5092 7
(0), € 0.999 0 A)=8 \\"992 0.892 1
0 (0,3)=0.9. y , :
| . 6/7
nfeasible :é‘/\ 13
Max = $700 \.‘96' 07 2 (4 Qs 0 446 z
Must have at ominated : /
least 1 D1, D2 <) ;
easible >/ 14

Stage:
0 1
| D 0 decision | D 1 decision
Cost: $300 Cost: $150
Reliability: 0.9 Reliability: 0.8

Max = $850

0
Must have at ,1000)
least 1 D1, D2 %

2 30 §
| D 2decision 16
Cost: $200
Reliability: 0.5 V(3,1050)

13

Must have at
Rel Pred least 1 D1, D2

Stage:
0 1 2
| D 0 decision | D 1 decision | D 2 decision 16
Cost: $300 Cost: $150 Cost: $200 V(3,1050)
Reliability: 0.9 Reliability: 0.8 Reliability: 0.5 ’

Reliability design conceptual graph
90 E(1,1)=8 '3

E(2,1)=.5
Jo!) (21)

2 S
/10990 1 o .
S v 2.9 INON
Qs 1,600 N 6) 325 E1)= 3
Co2 A2 » 73 7
,1)= \\9
) 0.999 0)28 29 [0.892 1
,3)=0.9 Vit :)
Infeasible 6?79 8
‘s A
Max = $700 ‘9% 0.7922
Must have at -
least 1 D1, D2 ominated
easible
Max = $850

®

Reliability DP needs different data structure

Explosion of number of nodes

Dominance is a more general concept than label
correction
— Nodes with lower reliability but higher cost are pruned
— This is necessary to prune most dynamic programming
graphs
* Heuristics are usually used
Asymptotic analysis is not very helpful any more
e Most problems are O(min(graph size, 2"))
« Approaches with similar worst cases can have very
different actual running times. Must experiment.
Next time we’ll cover the set implementation for
dynamic programming
— We get rid of the nodes as well as the graph!

14

Things to notice in this formulation

Sorting
— We didn’t sort in the example, but in real problem it’s always
worth doing
— Almost always sort by benefit/cost ratio to get dominance
 In this problem, sort by failure probability/cost

* Having redundancy in cheap components with high failure rate is
likely to be the most effective strategy

— Sorting replaces many ad-hoc heuristics, gives same effect
There is no sink node

— There are tricks to avoid solving the last stage—see text
Heuristics

— Prune at each stage based on benefit/cost ratio. Eliminate the states with
small improvements over the preceding state

— Load ‘obvious’ solution elements into the source node via heuristic
— E.g in knapsack, load first 50 of expected 100 items in profit/weight order
— If you need to do these things, branch and bound is better approach

15

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

