
1.204 Lecture 14

Dynamic programming:

Job scheduling
Job scheduling

Dynamic programming formulation

•	 To formulate a problem as a dynamic program:
–	 Sort by a criterion that will allow infeasible combinations

tto bbe elili mi tinatedd effiffi ci tl iently
–	 Choose granularity (integer scale or precision) that

allows dominated subsequences to be pruned
•	 Choose coarsest granularity that works for your problem

–	 Use dynamic programming in fairly constrained

problems with tight budgets and bounds

•	 If problem is not highly constrained, you will need to apply
heuristic constraints to limit the search space

–	 Choose between multistage graph, set or custom
implementation

• Decide if a sentinel is helpful in set implementation
–	 Experiment

•	 Every problem is a special case, since DP is O(2n)
•	 Can you find special structure that makes your DP fast?

1

•

•

DP examples

•	 This lecture shows another example
–	 Job scheduling, using multistage graph

• Example of sorting feasibility pruning used effectively Example of sorting, feasibility, pruning used effectively
•	 Example of good software implementation

–	 No graph data structure built; solution tree built directly
–	 Good but not ideal representation of tree/graph nodes; some

nodes are created but not used
–	 We don’t even consider 2-D arrays, linked lists, etc., which do not

scale at all, but which are popular in many texts. Crazy☺

•	 Good DP codes are somewhat hard to write; there is much
detail to handle and many lurking inefficiencies to combatdetail to handle and many lurking inefficiencies to combat

–	 We will not dwell on the code details, but they are important

–	 Knapsack problem in next lecture, using sets
•	 Example of sorting, feasibility, pruning in different framework
•	 Multistage graph doesn’t work: too many nodes per stage
•	 Object oriented design is big improvement over past codes

–	 Be careful: many texts have zillions of inefficient, tiny objects

Job scheduling dynamic program

•	 Each jjob to be scheduled is treated as a pprojject with a
profit, time required, and deadline
–	 We have a single machine over a given time (resource)
–	 Use multistage graph formulation from last lecture

•	 Algorithm pseudocode:
–	 Sort jobs in deadline order (not profit order as in greedy)
–	 Build source node for job 0
–	 Consider each job in deadline order:

•	 Build set of nodes for Build set of nodes for nextnext stage (job) stage (job) for each state (time spent) for each state (time spent)
•	 For current job:

–	 Build arc with no time assigned to job
–	 If time so far + current job time <= job deadline, build arc with job done

–	 Build sink node for artificial last job
–	 Trace back solution using predecessor nodes

2

3

Job scheduling algorithm

• We will label every node in the graph that we encounter y g p
with its profit and time used
– If we find a better path to that node, we update its profit and

time labels
– This is exactly the same as the shortest path label correcting

algorithm
• We know this algorithm runs fast

– The issue is then: how big is the graph?
• A smart formulation keeps the graph size at some polynomial

b d i th bl ibound in the problem size
• Otherwise, the graph becomes exponentially large and this is why

dynamic programming worst case is exponential
– If our model is good, we also need a good implementation

• A bad implementation can make a good model run very slowly
• (A good implementation can’t really speed up a bad model…)

Job scheduling example

Job Deadline Profit Time
0 1 39 10 1 39 1
1 2 90 1
2 2 88 2
3 2 20 1
4 3 37 3
5 3 25 2
6 4 70 1

4 time units of machine time available.

Job scheduling graph: forward
0 0 0 1

V(1,0) V(2,0) V(3,0)
0 6

1

2

6

7
V(1,1) V(2,1)

E(2,0)=0

E(2,0)=0

11

12
V(3,1)

E(3,0)=0

E(3,0)=0 0 0

39 0 90 1 90 7

0

3 8

V(0,0)

V(1,2) V(2,2)
13

V(3,2)
E(3,0)=0

129 2 129 8

4 9
V(1,3) V(2,3)

14
V(3,3)

5 10
V(1,4) V(2,4)

Stage:
0 1 2 3

15
V(3,4)V pred

| Job 0 decision | Job 1 decision | Job 2 decision |
Profit: 39 Profit: 90 Profit: 88
Time: 1 Time: 1 Time: 2
Deadline: 1 Deadline: 2 Deadline: 2

Job scheduling graph: backward
0 0 0 1

V(1,0) V(2,0) V(3,0)
0 6

1

2

6

7
V(1,1) V(2,1)

E(2,0)=0

E(2,0)=0

11

12
V(3,1)

E(3,0)=0

E(3,0)=0 0 0

39 0 90 1 90 7

0

3 8

V(0,0)

V(1,2) V(2,2)
13

V(3,2)
E(3,0)=0

129 2 129 8

V(1,3) V(2,3) V(3,3)

4 9 14

5 10
V(1,4) V(2,4)

Stage:
0 1 2 3

15
V(3,4)V pred

| Job 0 decision | Job 1 decision | Job 2 decision |
Profit: 39 Profit: 90 Profit: 88
Time: 1 Time: 1 Time: 2
Deadline: 1 Deadline: 2 Deadline: 2

4

t

t t

Job class
public class Job implements Comparable {

int jobNbr; // Package access

int deadline; // Package access

int profit; // Package access

int time; // Package access

public Job(int j, int d, int p, int t) {p (j, , p,) {

jobNbr= j;

deadline= d;

profit= p;

time= t;

}

public int compareTo(Object other) {

Job o= (Job) other;

if (deadline < o.deadline)

return -11;

else if (deadline > o.deadline)

return 1;

else

return 0;

}

public String toString() {

return("J: "+ jobNbr+" D: "+ deadline+" P: "+ profit+" T: "+ time);

} }

JobScheduler

public class JobScheduler {

private Job[] jobs; // Input set of jobs to schedule

private int nbrJobs; //// Number of inpput jjobs p ;

private int endTime; // Latest end time of job (=max resource)

private int[] path; // List of nodes in the optimal solution

private int jobsDone; // Output: total number of jobs

private int totalProfit; // Output

private int nodes; // Nodes generated in DP graph

private int[] nodeProfit; // Profit of jobs prior to this node

private int[] nodeTime; // Time spent on jobs prior to node

i i t[] d // P // Predecessor nodde with best profitfitprivate int[] pred; d ith b

private int stageNodes; // Difference in node numbers from

// one stage to next

5

JobScheduler constructor, jsd()
public JobScheduler(Job[] j, int e) {

jobs = j;

endTime = e;

nbrJobs= jobs.length;

path= new int[nbrJobs+1];

nodes= (nbrJobs-1)*(endTime+1)+2;

// nodes= stages*states + source, sink

nodeProfit= new int[nodes];

nodeTime= new int[nodes];

pred= new int[nodes];

for (int i= 0; i < nodes; i++)

pred[i]= -1;

stageNodes= endTime+1;
stageNodes= endTime+1;

}

public void jsd() {

buildSource();

buildCenter();

buildSink();

backPath();

}

buildSource()

private void buildSource() {

nodeProfit[0]= 0; // Source is node 0

nodeTime[0]= 0;;[]

// Treat stage 0 as special case because it has only 1 node

// If job not in solution set (0 time and profit).
nodeProfit[1]= 0;

nodeTime[1]= 0;

pred[1]= 0;

// If job feasible

if (jobs[0].time <= jobs[0].deadline) {

int toNode= 1+ jobs[0] time;
int toNode= 1+ jobs[0].time;

nodeProfit[toNode]= jobs[0].profit;

nodeTime[toNode]= jobs[0].time;

pred[toNode]= 0;

}

}

6

buildCenter()
private void buildCenter() {

for (int stage= 1; stage < nbrJobs-1; stage++) {

// Generate virtual arcs

for (int node=(stage-1)*stageNodes+1; node<= stage*stageNodes;node++)

if (pred[node] >= 0) {

// If job not in solution,build arc if it is on optimal sequence

if (nodeProfit[node] >= nodeProfit[node+stageNodes]) {

nodeProfit[node+stageNodes]= nodeProfit[node];

nodeTime[node+stageNodes]= nodeTime[node];

pred[node+stageNodes]= node;

}

// If job feasible build virtual arc if it is on optimal sequence

if (nodeTime[node]+jobs[stage].time <= jobs[stage].deadline) {

int nextNode= node + stageNodes + jobs[stage] time;int nextNode= node + stageNodes + jobs[stage].time;

if (nodeProfit[node]+jobs[stage].profit>=nodeProfit[nextNode]){

nodeProfit[nextNode]= nodeProfit[node]+ jobs[stage].profit;

nodeTime[nextNode]= nodeTime[node]+ jobs[stage].time;

pred[nextNode]= node;

}

}

}

} }

buildSink()
private void buildSink() {

int stage= nbrJobs - 1;

int sinkNode= (nbrJobs-1)*stageNodes + 1;

for (int node=(stage-1)*stageNodes+1; node <= stage*stageNodes; node++)

if (pred[node] >= 0) {

// Generate only single best virtual arc from previous node

// Job feasible

if (nodeTime[node] + jobs[stage].time <= jobs[stage].deadline) {

// Job in solution

if (nodeProfit[node]+ jobs[stage].profit >= nodeProfit[sinkNode]) {

nodeProfit[sinkNode]= nodeProfit[node]+ jobs[stage].profit;

nodeTime[sinkNode]= nodeTime[node]+ jobs[stage].time;

pred[sinkNode]= node;

}

}
}

// Job not in solution

if (nodeProfit[node] >= nodeProfit[sinkNode]) {

nodeProfit[sinkNode]= nodeProfit[node];

nodeTime[sinkNode]= nodeTime[node];

pred[sinkNode]= node;

}

}

}

7

backPath(), outputJobs()

private void backPath() {

// Trace back predecessor nodes from sink to source

path[nbrJobs]= (nbrJobs-1)*stageNodes + 1; // Sink node

for (int stage= nbrJobs-1; stage >= 1; stage--)

path[stage]= pred[path[stage+1]];

}

public void outputJobs() {

System.out.println("Jobs done:");

for (int stage= 0; stage < nbrJobs; stage++) {

if (nodeProfit[path[stage]] != nodeProfit[path[stage+1]]) {

System.out.println(jobs[stage]);

jobsDone++;jobsDone++;

totalProfit += jobs[stage].profit;

}

}

System.out.println("\nJobs done: " + jobsDone +

" total profit: "+ totalProfit);

}

main()

public static void main(String[] args) {

Job[] jobs= new Job[7];

jobs[0]= new Job(0, 1, 39, 1);

jobs[1]= new Job(1, 2, 90, 1);

jobs[2]= new Job(2, 2, 88, 2);

jobs[3]= new Job(3, 2, 20, 1);

jobs[4]= new Job(4, 3, 37, 3);

jobs[5]= new Job(5, 3, 25, 2);

jobs[6]= new Job(6, 4, 70, 1);

int endTime= 4;

Arrays.sort(jobs); // In deadline order

JobScheduler j= new JobScheduler(jobs, endTime);

j jsd();j.jsd();

j.outputJobs();

}

8

vehicle fleet maintenance

Job scheduling DP complexity

•	 Complexity is minimum of:
–	 O(nM), where

•	 n is number of jobs (stages)
•	 M is min(∑pi, ∑ti, di)

–	 O(2n)
•	 Intuitively, if no pruning occurs and the time

resource is large, the number of nodes can
double at each stage (job)double at each stage (job)
–	 This leads to O(2n) complexity

•	 If the times, deadlines or profits are constrained,
many fewer nodes are generated
–	 This leads to O(nM) complexity

Example uses of job scheduling

•	 Transportation vehicle fleet maintenanceTransportation
–	 Many vehicles, many jobs with priority and benefit

•	 Routine or scheduled maintenance
•	 Accident repair
•	 Upgrades

•	 Manufacturing facility scheduling
–	 Marketing requirement for production of products with

exppected pprofit marggins,, deadlines and times
–	 Facilities making a range of products (e.g., in China)

•	 Robotics: control of real-time tasks
•	 Taxi dispatch (with extensions)

9

Other dynamic programming examples

•	 Most resource allocation pproblems are solved with linear
programming
–	 Sophisticated solutions use integer programming now
–	 DP is used with nonlinear costs or outputs, often in process

industries (chemical, etc.) with continuous but complex and
expensive output

–	 DP for resource allocation has ‘dimensionality curse’ when
there is more than one resource:

•	 Have triplets of (cost, time, profit) for example, instead of pair of
(cost profit) (cost, profit)

•	 Our job scheduling DP is a nice exception
•	 Dynamic programming is also used in:

–	 Production control
–	 Markov models of systems
–	 Financial portfolio management (risk management)
–	 Multi player game solutions!

Reliability design

D1 D2	 Dn-1 D0 …

D0
D0
D

D1
D1

…
D0

D1

D2 Dn-1 D2 Dn-1 D2 D2	 DDn-1 D2

Multiple devices are used at each stage. Monitors determine
which devices are functioning properly. We wish to obtain
maximum reliability within a cost constraint

10

11

Reliability design formulation

• If a stage i contains mi devices Di:
Probability that all have a fault = (1 r)mi– Probability that all have a fault = (1-ri)mi

– Reliability of stage yi= 1 – (1-ri)mi

• We want to maximize reliability=
– Subject to a cost constraint:

∏ −−
n

m
i

ir))1(1(

i td1≥

≤∑
n

ii Cmc

– We need a more flexible representation: sets (but of a
different sort that our Set class)

integerand,1≥im

Reliability design example

Device D0 D1 D2

Device type Input buffer Processor Output buffer

Cost $300 $150 $200

Reliability 0.9 0.8 0.5

• Maximum cost= $1050

=

Reliability design conceptual graph
0.9 0

V(1,300)
1

2
V(1,600)

0 0

0.99 0

0
V(0,0)

V(1,900)
0.999 0

Infeasible
Max = $700
Must have at
least 1 D1, D2

6

7

11

12

8 13

14

Rel Pred
Stage:

0 1 2

| 	 D 0 decision | D 1 decision | D 2 decision

Cost: $300 Cost: $150 Cost: $200

Reliability: 0.9 Reliability: 0.8 Reliability: 0.5

15

16

Reliability design conceptual graph

1

2

6

7

V(1,300)

V(1,600)

V(2,450)

V(2,600)

E(1,1)=.8
11

120 0

0.9 0

0.99 0

0.720 1

0.864 1

0

8

V(0,0)

V(1,900) V(2,750)
13

14

0.892 10.999 0

Infeasible
Max = $700
Must have at
least 1 D1, D2

Infeasible
Max = $850 Max $850

Rel Pred	
Must have at
least 1 D1, D2

Stage:
0 1 2
| 	 D 0 decision | D 1 decision | D 2 decision

Cost: $300 Cost: $150 Cost: $200

Reliability: 0.9 Reliability: 0.8 Reliability: 0.5

15

16

12

=

=

Reliability design conceptual graph
0.9 0	

V(2,450)
0.720 1

V(1,300)

V(0,0)

1

2	

6

7
V(1,600)

E(1,1)=.8

0 0

0.99 0
V(2,600)

0.864 1

V(2,750)
8

V(1,900)
0.892 10.999 0

Infeasible
Max = $700
Must have at

0.792 2

least 1 D1, D2

Max = $850
Infeasible

Dominated-label correction

0

Max $850

Rel Pred	
Must have at
least 1 D1, D2

Stage:

0 1 2

| 	 D 0 decision | D 1 decision | D 2 decision

Cost: $300 Cost: $150 Cost: $200

Reliability: 0.9 Reliability: 0.8 Reliability: 0.5

11

12

13

14

15

16

Reliability design conceptual graph
0.9 0	

V(2,450)
0.720 1

V(1,300)
0.360 6
V(3,650

1

2	

6

7
V(1,600) V(2,600)

11

12
V(3,800

0.99 0 0.864 1 0.432 7

E(2,1)=.5 E(1,1)=.8

(0,0) V
0 0	 E(2,1)=.5

8
V(1,900) V(2,750)

13

14

V 0(3,85

V 0(3,95

0.892 1 0.540 60.999 0

Must have at

Infeasible
Max = $700

least 1 D1, D2

0.792 2
Dominated

Max = $850 Max $850
Infeasible

0.446 8

0 648 7
Rel Pred Must have at

least 1 D1, D2

.648

0

Stage:
0 1 2
| D 0 decision | D 1 decision | D 2 decision

15
V(3,1000)

16
0.630 6

Cost: $300 Cost: $150 Cost: $200

7 0

V(3,1050)Reliability: 0.9 Reliability: 0.8	 Reliability: 0.5

13

=

Reliability design conceptual graph
0.9 0	

V(2,450)
0.720 1

V(1,300)
0.360 6
V(3,650

1

2

6

7
V(1,600) V(2,600)

E(1,1)=.8
11

12
V(3,800

E(2,1)=.5

E(2,1)=.5 0 0

0.99 0 0.864 1 0.432 7

0

8

V(0,0)

V(1,900) V(2,750)
13

14

V(3,850

V(3,950

0.892 1 0.540 60.999 0

Infeasible
Max = $700
Must have at
least 1 D1, D2

0.792 2

Max = $850
Infeasible

Dominated
0.446 8

0 648 7

Dominated

Stage:
0 1 2
| D 0 decision | D 1 decision | D 2 decision

Cost: $300 Cost: $150 Cost: $200

15
V(3,1000)Rel Pred

Max $850
Must have at
least 1 D1, D2

0.648 7

16
0.630 6

Dominated

V(3,1050)Reliability: 0.9 Reliability: 0.8	 Reliability: 0.5

Reliability DP needs different data structure
•	 Explosion of number of nodes
•	 Dominance is a more general concept than label

correctioncorrection
–	 Nodes with lower reliability but higher cost are pruned
–	 This is necessary to prune most dynamic programming

graphs
•	 Heuristics are usually used

• Asymptotic analysis is not very helpful any more
•	 Most pproblems are O((min((g grapph size,, 2n))))
•	 Approaches with similar worst cases can have very

different actual running times. Must experiment.
•	 Next time we’ll cover the set implementation for

dynamic programming
–	 We get rid of the nodes as well as the graph!

14

Things to notice in this formulation

•	 Sorting
–	 We didn’t sort in the example, but in real problem it’s always

th d iworth doing
– Almost always sort by benefit/cost ratio to get dominance

•	 In this problem, sort by failure probability/cost
•	 Having redundancy in cheap components with high failure rate is

likely to be the most effective strategy
– Sorting replaces many ad-hoc heuristics, gives same effect

•	 There is no sink node
–	 There are tricks to avoid solving the last stage—see text see textThere are tricks to avoid solving the last stage

•	 Heuristics
–	 Prune at each stage based on benefit/cost ratio. Eliminate the states with

small improvements over the preceding state
–	 Load ‘obvious’ solution elements into the source node via heuristic
–	 E.g in knapsack, load first 50 of expected 100 items in profit/weight order
–	 If you need to do these things, branch and bound is better approach

15

MIT OpenCourseWare
http://ocw.mit.edu

1.204 Computer Algorithms in Systems Engineering
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu/terms
http://ocw.mit.edu

