
1.204 Lecture 22 

Unconstrained nonlinear optimization: 

Amoeba
Amoeba


BFGS


Linear programming: Glpk


Multiple optimum values 

From Press 

Heuristics to deal with multiple optima: 
• Start at many initial points. Choose best of optima found. 
• Find local optimum. Take a step away from it and search again. 
• Simulated annealing takes ‘random’ steps repeatedly 
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Nonlinear optimization 

•	 Unconstrained nonlinear optimization algorithms 
generall  lly use thth  e same strategy as unconstt irainedt t 	 d  
–	 Select a descent direction 
–	 Use a one dimensional line search to set step size 
–	 Step, and iterate until convergence 

•	 Constrained optimization used the constraints to 
limit the maximum step size 
–	 UUnconstraiinedd optiimiizatiion must sellect maxiimum step 

size 
–	 Step size is problem-specific and must be tuned 

•	 Memory requirements are rarely a problem 
– Convergence, accuracy and speed are the issues 

Family of nonlinear algorithms 

•	 Amoeba (Nelder-Mead) method 
–	 Solves nonlinear optimization problem directly Solves nonlinear optimization problem directly 
–	 Requires no derivatives or line search 
–	 Adapts its step size based on change in function value 

•	 Conjugate gradient and quasi-Newton methods 
– Require function, first derivatives* and line search 
– Line search step size adapts as algorithm proceeds 

•	 Newton Raphson method (last lecture) Newton-Raphson method (last lecture) 
–	 Used to solve nonlinear optimization problems by 

solving set of first order conditions 
–	 Uses step size dx that makes f(x+dx)= 0. Little control. 

•	 ‘Globally convergent’ Newton variant has smaller step size 
– Needs first and second derivatives (and function) 
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Choosing among the algorithms 
•	 Amoeba is simplest, most robust, slowest 

–	 “Crawls downhill with no assumptions about function” 
–	 No derivatives required 

•	 Conjugate gradient (Polak-Ribiere) (not covered) 
–	 Need first derivatives 
–	 Less storage than quasi-Newton but less accuracy 

•	 Quasi-Newton (Davidon-Fletcher-Powell or 
Broyden-Fletcher-Goldfarb-Shanno) 
–	 Standard version uses first derivatives 
–	 Variation computes first derivatives numerically 
–	 Better than conjugate gradient for most problems 

•	 Newton-Raphson 
–	 Needs function, first and second derivatives 
–	 Simplest code but not robust or flexible 
–	 Use amoeba if you want a simple approach 

Amoeba algorithm 

•	 The easiest algorithm for unconstrained 
nonlinear opptimization is known as Nelder-Mead 
or “the amoeba” 

•	 It is very different 
–	 It requires only function evaluations 

•	 No derivatives are required 
–	 It is less efficient than the line search algorithms 

•	 But it tends to be robust (line methods are temperamental) 
– It is short (~150 lines) and relatively easy to implement 
– Works in problems where derivatives are difficult: 

•	 Fingerprint matching 
•	 Models of brain function 

–	 We’ll use logit demand model estimation as test case for 
all the algorithms today 
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Amoeba steps 

•	 Simplex is volume defined by n+1 points in n 
dimensions


In 3 D it is a tetrahedron or pyramid
–	 In 3-D, it is a tetrahedron or pyramid 
•	 Select a starting guess at point P0 

–	 Set other points of simplex as Pi= P0 + ∆ei 

•	 Take a series of steps 
–	 Most steps move point of simplex where function is 


highest (“highest point”): “reflection”

•	 Conserve volume of simplex -> avoid degeneracy > avoid degeneracy Conserve volume of simplex 

–	 Where function is flat, method expands simplex to take 

larger steps: “expansion and reflection”


–	 When it reaches a “valley floor”, simplex “contracts” itself 
in transverse direction and tries to ooze down the valley 

–	 If trying to pass through “eye of needle” it “contracts itself 
in all directions” around its lowest (best) point 

From Press et al 

Amoeba steps 

From Press et al 
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Amoeba pseudocode: minimization 

•	 Start at initial guess 
–	 Determine which point is highest by looping over simplex 

points and evaluating function at each 
–	 If difference between highest and lowest is small, return 

•	 Otherwise ooze (iterate): 
– Reflect by factor= -1 through face of simplex from high point 

•	 If this is better than low point, reflect/expand by factor of 2 
•	 If this is worse than second highest, contract by 2 in this directionIf this is worse than second highest, contract by 2 in this direction 
•	 If this is worst point, contract in all directions around lowest point 

–	 Select new face based on new high point and reflect again 
–	 Terminate if difference between highest and lowest points is small 

•	 Or terminate at maximum iterations allowed 

Amoeba termination criteria 

•	 All nonlinear optimization algorithm termination 
criteria are difficult


h  10  8
–	 TTermiinate when step siize iis small  (  ll (~10-8 with d ith doublbles)) 
–	 Change in function value is small (~10-14 with doubles) 

•	 Termination can occur at a local minimum 
–	 Restart amoeba at a minimum it found 

•	 Reset initial simplex using Pi= P0 + ∆ei , 
• Don’t use simplex that existed at termination 

•• Code is in download: Code is in download: 
public Amoeba(double ftol)


public double[] minimize(double[] point, double del, 

MathFunction3 mf3)


// And other optional methods


– This is very easy; code ran first time on demand model 
•	 Experiment with starting point and del, but it’s usually easy 
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AmoebaTest 
public class AmoebaDemandTest { 

public static void main(String[] args) { 

double[][] x= { {1, 52.9 - 4.4}, 

{1, 4.1 - 28.5},  // Etc. }; 

double[] y= {0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 

11,  11, 0, 1, 1,  00, 1};0  1  1 1};  

// Almost identical to DemandModel from last lecture 

// Implements MathFunction3, which has method func2() 

// func2() returns -logLikelihood() 

DemandModelAmoeba d= new DemandModelAmoeba(x, y); 

double[] beta= {0, 0}; // Initial guess 

double log0= d.func2(beta); 

double[] initialPoint= {0.0, 0.0}; 

double initialDelta= 0.1; 

double ftol= 1E-14; 

Amoeba a= new Amoeba(ftol); 

beta= a.minimize(initialPoint, initialDelta, d); 

double logB= d.func2(beta); 

double[][] jacobian= d.jacobian(beta); 

d.print(log0, logB, beta, jacobian); 

} 	 } // Output identical to last lecture example. 116 evals 

Quasi-Newton methods (DFP, BFGS) 

•	 We used a similar method to BFGS in constrainedWe used a similar method to BFGS in constrained 
optimization: 
–	 Find derivatives 
–	 Find direction that yields maximum estimated objective 

function change 
–	 Use line search to find optimal step size 
–	 Move, and repeat 

•	 DFP and BFGS are essentially the same 
–	 One additional ‘correction term’ in BFGS 
–	 Treatment of roundoff errors, tolerances is different 
–	 Empirically, it seems BFGS is better than DFP 
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Quasi-Newton methods 

Split problem into two minimization problems, each with a “quadratic envelope” 
You must understand your problem well enough to do this 

Newton method 

Full Newton step 

If the minimum region is narrow or twisty, it is hard to get down into it. 
Full Newton steps give little control. (Amoeba just munches along) 
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Quasi-Newton methods 

Quasi Newton steps 

BFGS takes a fraction of the Newton step, so that f(x) decreases at some 
minimum rate proportional to the average decrease 

High order derivatives


We may be tempted to use higher derivatives to fit our nonlinear functions. 
More terms in the Taylor series expansion mean a higher degree polynomial fit, 
but using higher order derivatives is difficult because they are “stiff” 

This is the challenge of nonlinear methods: use only low order derivatives 
to explore complex surfaces. There aren’t many general ways to do this. 
Solutions are problem-specific but use BFGS or other general algorithm: 
Understand problem regions; have good starting point; understand surface 
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High order derivatives

We may be tempted to use higher derivatives to fit our nonlinear functions.
More terms in the Taylor series expansion mean a higher degree polynomial fit,
but using higher order derivatives is difficult because they are “stiff”

This is the challenge of nonlinear methods: use only low degree derivatives
to explore complex surfaces. There aren’t many general ways to do this. 
Solutions are problem-specific but use BFGS or other general algorithm:
Understand problem regions; have good starting point; understand surface
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BFGS, p.2
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BFGS, p.3

• Newton’s method, far from the minimum, canNewton s method, far from the minimum, can 
project us to points x where f(x) is greater than 
the current value
– Large steps based on a quadratic approximation will not 

necessarily lead to improvements in ill-behaved function
– BFGS does a line search along the Newton direction
– It finds a point at which the objective has decreased
– This point is used to update the Hessian (which is a 

matrix of second derivatives)
– The Hessian is based on the previous Hessian and a set 

of correction terms based on ▼f , x and xi

– See Numerical Recipes for BFGS updating formula
• Proofs are difficult
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BFGS, p.4 

• The series of HThe series of Hii convergeconverge to Ato A-1 while while 
guaranteeing movement downhill 
– Convergence takes N steps if f is quadratic 

•	 The algorithm is sensitive to variable scaling: 
– Step length must be tuned 
– Scale variables to stay in “low” range of double values 

•	 The algorithm is not too sensitive to the accuracyThe algorithm is not too sensitive to the accuracy 
of the line search 

BFGS dfpmin() pseudocode 

•	 Compute function, gradient at start point PCompute function, gradient at start point P 
•	 Initialize inverse Hessian to identity matrix 
•	 Find initial descent direction along gradient 
•	 Loop until convergence 

– Line search along direction to find decrease (not min) 
– Update gradient and line direction 
– Ch k if i ll hCheck if chhange in x iis small enough to converge 
– Check if gradient is close enough to 0 to converge 
– Compute difference in gradients, x for BFGS update 
– Calculate next direction 

•	 If iteration limit reached, terminate 
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BFGS lnsrch() pseudocode 

•	 Takes point, function and gradient value at point, 
and direction ((line)) to search alongg as inpput 

•	 Finds new point with lower function value 
–	 Finding minimum along line requires too much 


computation


–	 Finding any point whose f is less than current isn’t good 
enough either; we may take too many steps 

–	 We find a point where the average decrease from the 
current point is a fraction of the gradient projectioncurrent point is a fraction of the gradient projection 

–	 We require a minimum step size so we don’t stall 
–	 We use a quadratic interpolation of f along the line to 

choose the first new point 
–	 We then use a cubic interpolation, now that we have 3 

points ( f(0), f(1) and f(m)) for remaining points 

BFGS code 

•	 First code set 
–	 BFGS: constructor, dfppmin()()  , lnsrch()  () 
–	 MathFunction4: interface with func(), df() [gradient] 
–	 DemandModelBFGS: Almost same as in Newton 
–	 DemandModelBFGSTest: Almost same as in Newton 

•	 Second code set 
–	 Same BFGS, MathFunction4, DemandModelBFGSTest 
–	 DemandModelBFGS df() method computes gradient 

numerically, without analytic expressions for derivatives 
•	 Both BFGS implementations converge quickly on 

same logit model coefficients as Newton 
–	 Code is subtle, especially interaction between dfpmin() 

and lnsrch(). 
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BFGSTest 
public class DemandModelBFGSTest { 

public static void main(String[] args) { 

double[][] x= { {1, 52.9 - 4.4}, 

{1, 4.1 - 28.5},}, // Etc. };};{ ,  // 

double[] y= {0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 

1, 1, 0, 1, 1, 0, 1}; 

// Almost identical to DemandModel from last lecture 

// Implements MathFunction4, with func() and df() 

DemandModelBFGS d= new DemandModelBFGS(x, y); 

double[] beta= {0, 0}; // Initial guess 

double log0= d.func2(beta); 

double gtol= 1E-14;double gtol 1E 14;


BFGS b= new BFGS(d, gtol);


double logB= b.dfpmin(beta); 


double[][] jacobian= d.jacobian(beta);


d.print(log0, logB, beta, jacobian);


}  } // Output identical to last lecture example. 10 iterations 

Nonlinear method performance


Method Iterations Function evaluations 
Newton 6 6n2= 24  
BFGS 10 or 11 10n= 20 
Amoeba 116 116 

This example is illustrative only, based on our logit test case. 
n is the number of variables ((coefficients in our test case)). 
As n increases, amoeba performance is relatively more competitive 

Amoeba and BFGS have better convergence and precision than 
Newton 
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Summary: nonlinear continuous methods 

•	 Note the similarities in solving discrete and 

continuous problems

–	 Starting solution is null or {0, 0, 0, …} 

• Or a good guess or greedy if we need a good first guess 
–	 Choose initial decision or initial direction/gradient 
–	 Find initial solution at stage/branch or Newton/other step 
–	 Look for better solution locally through 


greedy/branching/stages or new gradient

–	 Or globally through branch-and-bound/dynamic Or globally through branch and bound/dynamic 

programming or with advanced continuous methods 
•	 Simulated annealing, multiple restarts 

–	 Terminate when: 
•	 Local or global optimum found, or 
•	 Upper and lower bound close enough, or 
•	 Maximum iterations reached 

Linear programming 

•	 Linear programming has a linear objectiveLinear programming has a linear objective 
function and linear constraints 

•	 Used as a subproblem several times already: 
–	 Convex combinations (lecture 18) 
–	 Homework 8 transit network optimization 
–	 Network equilibrium used shortest path algorithm as a 

sppecial case of linear pproggrammingg 
–	 Often used as subproblem in branch and bound 

algorithms 
•	 We used shortest paths in our warehouse branch and 

bound as a special case of linear programming 
•	 See any integer programming text for a list of problems 

that use linear programming as a subproblem 
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Linear programming 

From GLPK manual 

© Andrew Makhorin. All rights reserved.

This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse


Linear programming standard form 

Formulate constraints as a set of equations and a set of bounded variables. 
This is easy to translate to the simplex tableau used for the computations. 

© Andrew Makhorin. All rights reserved.

This content is excluded from our Creative Commons license.

For more information, see http://ocw.mit.edu/fairuse
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LP program, p.1 
import org.gnu.glpk.*; // Glpk starts numbering at 1, not 0 

public class LP { 

public static void main(String[] args) {public static void main(String[] args) { 

int[] ia= new int[1+1000]; // Row index of coefficient 

int[] ja= new int[1+1000]; // Col index of coefficient 

double[] ar= new double[1+1000]; // Coefficient 

double z, x1, x2, x3; // Obj value, unknowns 

GlpkSolver solver = new GlpkSolver(); 

solver.setProbName("sample"); 

solver.setObjDir(GlpkSolver.LPX_MAX); // Maximization 

sollver.addRddRows(3);(3) 

solver.setRowName(1, "p"); 

solver.setRowBnds(1, GlpkSolver.LPX_UP, 0.0, 100.0); 

solver.setRowName(2, "q"); 

solver.setRowBnds(2, GlpkSolver.LPX_UP, 0.0, 600.0); 

solver.setRowName(3, "r"); 

solver.setRowBnds(3, GlpkSolver.LPX_UP, 0.0, 300.0); 

LP program, p.2 
solver.addCols(3);


solver.setColName(1, "x1");


solver.setColBnds(1, GlpkSolver.LPX_LO, 0.0, 0.0);


solver setObjCoef(1  10 0);
solver.setObjCoef(1, 10.0);


solver.setColName(2, "x2");


solver.setColBnds(2, GlpkSolver.LPX_LO, 0.0, 0.0);


solver.setObjCoef(2, 6.0);


solver.setColName(3, "x3");


solver.setColBnds(3, GlpkSolver.LPX_LO, 0.0, 0.0);


solver.setObjCoef(3, 4.0);


ia[1] = 1; ja[1] = 1; ar[1] = 1.0; /* a[1,1] = 1 */


ia[2]  1; ja[2] 2; ar[2]  1 0; /* a[1 2]  1 */
ia[2] = 1; ja[2] = 2; ar[2] = 1.0; /* a[1,2] = 1 */


ia[3] = 1; ja[3] = 3; ar[3] = 1.0; /* a[1,3] = 1 */


ia[4] = 2; ja[4] = 1; ar[4] = 10.0; /* a[2,1] = 10 */


ia[5] = 2; ja[5] = 2; ar[5] = 4.0; /* a[2,2] = 4 */


ia[6] = 2; ja[6] = 3; ar[6] = 5.0; /* a[2,3] = 5 */


ia[7] = 3; ja[7] = 1; ar[7] = 2.0; /* a[3,1] = 2 */


ia[8] = 3; ja[8] = 2; ar[8] = 2.0; /* a[3,2] = 2 */


ia[9] = 3; ja[9] = 3; ar[9] = 6.0; /* a[3,3] = 6 */
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LP program, p.3 
solver.loadMatrix(9, ia, ja, ar);


solver.simplex();


z = solver.getObjVal();


x1 = solver getColPrim(1);
x1 = solver.getColPrim(1);


x2 = solver.getColPrim(2);


x3 = solver.getColPrim(3);


System.out.printf("\nz = %g; x1 = %g; x2 = %g; x3 = %g\n",


z, x1, x2, x3);


}


// Output:


// 733 333; x1  33 3333; x2  66 6667; x3  0 00000
// z = 733.333; x1 = 33.3333; x2 = 66.6667; x3 = 0.00000


Using GLPK under WindowsXP 
•	 Download files, documentation from 

http://bjoern.dapnet.de/glpk/ 
•	 Copy glpk.jar to C:\Program Files\Java\jdk1.6.0_05\jre\lib 
•	 Copy glpk Copy glpk_jni.dll to the directory of project in Eclipse• jni dll to the directory of project in Eclipse 
•	 Eclipse: Project->Properties->Java Build Path. Add external 

JAR: glpk.jar 
•	 Create Eclipse project, write class as usual 
•	 See GLKP documentation (pdf). Java method names are 

based on C names:  lpx_set_obj_dir() becomes setObjDir() 
•	 glpk.jar uses the Java Native Interface (JNI) to create Java 

stubs for the C native functions in the glpk library 
•	 You now have a callable library of linear programming 

routines that you can use from Java 
•	 GLPK also has: 

–	 Mixed integer programming method, using branch and bound 
• Use this instead of your own B&B unless you have problem-specific pruning 

–	 Interior point linear programming method 
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