1.204 Lecture 23

Analytic approximations Vehicle routing Transit design

Summary- dispatch analysis

• Done before writing dispatch algorithm or system

- Understand the problem, objectives and constraints
- $-\,$ Use analytical optimization, simulation, probability, \ldots
- Deal with broader set of issues than a single algorithm
- Develop guidance for heuristics to be used

Transit system design Variables for bus system design: Number of routes (route spacing) Headway (frequency of service) Fare Vehicle size Route length Bus stop spacing Express versus local service Transfer pattern

Model summary

- Model implemented in Java code – Download code and documentation
- Provides framework for designing bus system:
 - Routes, headways, fares, vehicle sizes, express/local service
 - Bus stop spacing (fewer are better)
 - Route circuity (less circuity is better)
 - (Model variation used in planning Logan Express)
- Allows variation in objective and constraints
- Provides insight before addressing detailed system design with actual network and routes, using optimization algorithms and simulation
 - Most of the term was spent on optimization algorithms for decisions and design
 - Simulation not covered, used for truly difficult/detailed issues
- We'll do analytical approximations for queuing systems in the next lecture

1.204 Computer Algorithms in Systems Engineering Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.