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Application 1

* Package flow problem (express package
delivery operation)

— Shipments have specific origins and destinations
and must be routed over a transportation
network

— FHach set of packages with a common origin-
destination pair is called a commodity

* Time windows (availability and delivery time)
assoctated with packages

— The objective might be to minimize total costs,
find a feasible flow, ...
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Application 11

* Passenger mix problem
— Given a fixed schedule of flights, a fixed

fleet assignment and a set of customer
demands for air travel service on this
fleeted schedule, the airline's objective is to
maximize revenues by accommodating as
many high fare passengers as possible

— For some flights, demand exceeds seat
supply and passengers must be spz/led to
other itineraries of either the same or
another airline
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Application III

* Message routing problem

— In a telecommunications or computer
network, requirements exist for
transmission lines and message requests, or
commodities.

— The problem is to route the messages from
their origins to their respective destinations
at minimum cost
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MCF Networks

e Set of nodes

— Fach node associated with
demand for commodities

e Set of arcs

the supply ot or

— Cost per unit commodity flow

— Capacity limiting the f]

ow of all

commodities and/ or the f
individual commodities
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MCF Commodity Detinitions

* A commodity may originate at a subset of
nodes in the network and be destined for
another subset of nodes

* A commodity may originate at a single node
and be destined for a subset of the nodes

* A commodity may originate at a single node
and be destined for a single node
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MCF Objectives

Flow the commodities through the networks
from their respective origins to their
respective destinations at minimum cost

— Expressed as distance, money, time, etc.

Ahuja, Magnanti and Orlin (1993)-- survey ot
multi-commodity flow models and solution
procedures
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MCF Problem Formulations --
Linear Programs

* Network flow problems

— Capacity constraints limit flow of individual
commodities

— Conservation of flow constraints ensure flow
balance for individual commodities

— Flow non-negativity constraints
* With side constraints

— Bundle constraints restrict total flow of _AIL.L.
commodities on an arc
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MCF Constraint Matrix

Network tlow
problem,
commodity k=1

Network flow
problem,
commodity k=2

Network flow
problem,
commodity k=3

Network flow
problem,
commodity k=4

Bundle constraints limiting total flow of all commodities to arc capacities
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Alternative Formulations for O-D

Commodity Case

Node-Arc Formulation

— Decision variables: flow of commodity £ on each arc 7
Path Formulation

— Deciston variables: flow of commodity £ on each path for

£

“Tree” or “Sub-network” Formulation

— Define: super commodity: set of all (O-D) commodities
with the same origin o (or destination d)

— Decision variables: quantity of the super commodity £’
assigned to each “tree” or “sub-network” for £’

Formulations are equivalent

12/10/2003 Barnhart 1.206J/16.77J/ESD.215J)




Sample Network

a2 11— d
b\u/e'

Commodities

guant
5

15
5
10

cost capy

20

10

20

10

3 40

12/10/2003 Barnhart 1.206J/16.77J/ESD.215J)




Notation

Parameters
A: set of all network arcs

Decision Variables
Kk

» e x.X : number of units
K: set of all commodities J

of commodity k

N: set of all network nodes . y
O(k) [D(K)]: origin [destination] assigned to arc jj

node for commodity k

k

C;* : per unit cost of

commodity k on arc jj

u; : total capacity on arc jj

(assume u.* is unlimited for
each k and each 1j)

d, : total quantity of
commodity k
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Node-Arc Formulation
Minimize ), > c;x;

subject to

Y x; - xh=d, if ieO(k)
J J

=—d, if ie D(k) : Conservation of Flow

=0 otherwise
k - _ :
Zk: x; Su, V(,j)ed : Bundle constraints

V(i,j)e A,k eK : Nonnegativity constraints
k2 k4
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Additional Notation

Parameters Decision Variables

e Pk set of all paths for
commodity k, for all k

. fp: fraction of total
quantity of

C, ! per unitcost of

commodity k on path p commodity k
=Y. cF assigned to path p

1j €p i]
5ijp D = 1if Path P
contains arc ij; and = 0
otherwise
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O/D Based Path Formulation

Minimize kz Z d, C p f »

p Pt
subject to
Z Z d, [, é;jp . Vi, j) € 4 : Bundle constraints
k P epk

Z S r 1 : Flow balance constraints

p €P*

” Vp

: Non-neg. constraints

k=4

e
k=1
k=2
k=3
k=4

Cost 1 ¢, d, C,d, C.d, | C.d,
Variable fl f4 fs f6
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Additional Notation

Parameters

S: set of source nodes
neN for all commodities

Qs the set of all sub-
networks originating at s

TC,: total cost of sub-
network q originating at s
C,d : = lifpathpis
contained in sub-network
q; and = 0 otherwise

Decision Variables

RqS . fraction of

total quantity of the
super commodity
originating at s
assigned to sub-
network q
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Sub-network Formulation
Minimize Z Z( Z Zcp é/pq dk )R;

seS geQ’ keq p epX
subject to
Z Z( Z de OP)RICY <u; V(i,j) €4 : Capacity Limits on Each Arc
s g er k €s p GPk
ZR s ¢ =1 Vs €8 : Mass Balance Requirements
q €0’
Ry 20 Vg €eQ’,s €8 : Nonnegative Path Flow Variables

Sub- network

o=1
d;+d, dy+d,
0] 0]
d, d+ d,
d, 0]
e 0]
o=1

0=2
0=3

Cost. TC12 TC22

Variable 2 2
5 6 Rl Rz
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Linear MCF Problem Solution

e Obvwvious Solution
— LP Solver

* Difficulty

— Problem Size: (|N|=|Nodes|, |C|=|Commodities |,
|A|=| Arcs|)

* Node-arc formulation:
— Constraints: [N |[*|C| + |A]
— Variables: |A|*|C]|
* Path formulation:
— Constraints: |A| + |C|
— Variables: |Paths for AII. commodities |
* Sub-network formulation:
— Constraints: |A|+|Origins |
— Variables: | Combinations of Paths by Origin |
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General MCF Solution Strategy

* Try to Decompose a Hard Problem Into a Set of
Easy Problems
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MCF Solution Procedures 1

* Partitioning Methods

— Exploit Network Structure to Speed Up Simplex
Matrix Computations

e Resource-Directive Decomposition

— Repeat until Optimal:
* Allocate Arc Capacity Among Commodities
* Find Optimal Flows Given Allocation
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MCF Solution Procedures 11

* Price-Directive Decomposition

— Repeat until Optimal:
* Modify Flow Cost on Arc
* Ionore Bundle Constraints, Find Optimal Flows
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Revisiting the Path
Formulation

MINIMIZE % , 2 , ot dye,f,
subject to: Zp =Pk ) b eK d%gf S%y VyEA

Xoepp) = 1 VkeEK

520 VpePs, VkeK
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By-products of the Simplex
Algorithm: Dual Variable Values

Duals

-T;;: the dual variable associated with the bundle

constraint for arc ij (T is non-negative)

6% : the dual variable associated with the commodity

constraints

Economic Interpretation

: the value of an additional unit of capacity on arc ij

T
1

o~/ d, : the minimal cost to send an additional unit of
commodity k through the network
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Modified Costs

Definition: Modified cost for arc 77 and

commodity k = cl.].k+ 7T,

Definition: Modified cost for path p and

: — k
commodity k = Zil-e 4 (¢ 5+ 70 )51.]1’

1
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Optimality Conditions for the Path Formulation

f¥,and 7*;, 6** are optimal for all k and all jj iff:
Primal feasibility is satistied
L 2 pk 2 o i f,00 Suy VijeA
2. Zpeppy S5 =1 VkeK
3. 5,20 Vpelr, VkeK
Complementary slackness is satisfied
Lo, ept 2 g ek A f*507 -4;) =0, VijeA
2. 0¥ (X, peff— 1) =0, VkeK

Dual feasibility 1s satisfied (reduced cost is non-negative
for a minimization problem)

1. (d GAdﬂ-é‘) o =d /é(z/e/l (C
§p oé/dé)>0 v pe Ph ke K
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Multi-commodity Flow
Optimality Conditions

The price for an additional unit of capacity is 0
unless capacity is fully utilized

I T2, cpe 2 g cx e f*507 - ;) =0, VijeA
A path p for commodity kis utilized only if its

“modified cost” (thatis, 2._, (Jf + 72'*?-5?]9 ) is
minimal, for all paths pe P

1. Reduced Costs all non-negative:
c:D = cz’é(Zﬁ-EA (tf + ﬂ*y) @P- o*/d, ) =0,
Vpe P5 VEke K
2. ﬁp (de/l (cf + ﬂ'*y) @P o /d,) =0,
Vpe PX VikeK
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Column Generation- A Price
Directive Decomposition

Millions/Billions of Variables

L
=
1)
B
N
S
=}
O

Never Considered
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RMP and Optimality Conditions

Consider f* and 7*;, 6** optimal for RMP, then
Primal feasibility 1s satisfied

DN DI edef*Pﬁf S%g VieA

2. Zcppy [ =1 VkeK
3. f520 VpePs VkeK

Complementary slackness is satisfied
. T2 cpe 2y cx e f*507 - ;) =0, VijeA
2. 0 (2, peff—1) =0, VkeK

Dual feasibility is guaranteed (reduced cost is non-
negative) ONLY for a path p included in RMP

1. (éllléé' +22"6Ad/é7z-y'5ﬁb)_0é:d,é(zy'EA (@/é_|_
%) 8- ot d,) 20, Vpe Py ke K
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LP Solution: Column Generation

* Step 1: Solve Restricted Master Problemn (RMP) with
subset of all variables (columns)

Step 2: Solve Pricing Problem to determine 1f any
variables when added to the RMP can improve the
objective function value (that is, 1f any variables
have negative reduced cost)

Step 3: If variables are identified in Step 2, add
them to the RMP and return to Step 1; otherwise
STOP
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Pricing Problem

Given 7 (non-negative) and 0* (unrestricted),
the optimal duals for the current restricted

master problem, the pricing problem, for
each pe PX ke Kis

min yepe (de (X ;o4 (¢ + 7)) 67- 5 /d, )
Or, equivalently:
Ml.ﬂpép’é 2? — (Jf + 72'9) 55]9

» A shortest path problem for commodity k (with
modified arc costs)
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Example- Iteration 1

e
k=1
k=2
k=3
k=4

Cost.

Variable
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Example- Iteration 2

e
k=1
k=2
k=3
k=4

Cost, 135 75 105
Variable f, =13 f, =13 f, =1/3
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MCF Optimality Conditions

* For each peP* for each k, the reduced cost ¢’;;

7%
— =g r e dim 87 ot = 5 (At + doz)S) -
o= 5, okt 700 - Gé/dé20

* where T, G are the optimal duals for the current restricted
master problem

= (), for each utilized path p implies

> (et +dm) 5 = o
or equivalently,

Z (cé ;) O; 0L = o*/d,
So 1f iy ep) €~ 2 (6 + 70) 87 - 0°/dy 2 0, the
current solut1on to the restrlcte(f master problem 1s
optimal for the original problem

I min, cpyc'y = 2, (cf + ) 64" - 0°/d, < 0,add p* to

restricted master problem
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e Data Set

Data Set

Nodes

Links

capacitated

uncapacitated

# Origin

e Constraint Matrix Size

Improvement

row

column

new_row

Node Arc

14,155,336

23,905,657

Path

18,902

Sub-network

1,499

12/10/2003
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Computational Results

Number of Nodes: 807

Number of Links: 1,363
Number of Commodities: 17,539

Computational Result (IBM RS6000, Model
370)

— Path Model: 44 minutes

— Sub-network Model: < 1 minute
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LP Computational Experiment

* Test etfect of adding most negative
reduced cost column for each
commodity vs. adding several negative
reduced cost columns for each
commodity
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Generating Several Columns Per
Commodity

* Select any basic column g{b has reduced cost

= () for some path p and commodity £, call it
the &ey(k)

* Add a// simple paths representing symmetric
difference between most negative reduced

cost path and £ey(k)
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Example

- . pl- most negative reduced cost path for k
' * /" s
——eo- () -0

key(k)

Add to LP:
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P Solution:
One Path per Commodity

problem iterations columns time (sec)

3747 9125 240
3572 9414 246
3772 10119 268
3663 10101 289
10128 10624 325
8509 27041 1289
9625 29339 1332
7135 22407 842
9500 30132 1369
0 7498 23571 833

|
2
3
4
5
§)
7
8
9
1

301 nodes, 497 arcs, 1320 commodities.
Times are on an IBM RS6000/590.
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P Solution:
All Simple Paths for Each Commodity

problem 1iterations columns time (sec)

1 2455 8855 162
2690 10519 199
2694 10617 224
2511 10496 218
2706 11179 234
4391 25183 662
4208 23880 607
3237 17587 398
4191 20472 501

0 3633 21926 420

)
3
4
5
6
7
8
9
|

301 nodes, 497 arcs, 1320 commodities.
Times are on an IBM RS6000/590.
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Integer Multi-Commodity
Network Flows

* Consider the modified multi-commodity
network flow problem:
— Added zntegrality restriction that each

commodity must be assigned to exactly
one path

*,€ (0.1), Vp € P

—Solution procedure: branch-and-
bound, specialized to handle large-
scale problems
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Integer Multicommodity Flows:
Problem Formulation

MINIMIZE %, 2 ,opt dyc,f,

subject to: Zp =Pk ) b eK d%gf S%y VyEA

Xoepp) = 1 VkeEK

/€ (0,1) VpeP:, VkeK
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Branch-and-Bound: A Solution
Approach for Binary Integer

Programs

All possible solutions at leaf
nodes of tree (2" solutions, where
n is the number of variables)
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Branch-and-Bound: A
Solution Approach tfor Binary

Integer Programs

e Branch-and-Bound is a swart enumeration
strategy:

— With branching, all possible solutions (e.g., 20umber
of path for all commodities) are enumerated

— With bounding, only a (usually) small subset of
possible solutions are evaluated before a provably
optimal solution is found
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Bounding: The Linear

Programming (L.P) Relaxation
Consider the linear path-based MCF problem

formulation
— Objective 1s to minimize

The LP relaxation replaces

]fbé 0,1

with
>
12 f,20
Let 2, represent the optimal LP solution and let g,
represent the optimal IP solution
ep S e
— LP’s provide a bound on the lowest possible value of the

optimal integer solution
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Branching

Consider an IP with binary restrictions on all

variables, denoted P(7)

Let I.P(7) denote the linear programming relaxation of
P(7) and let x*(7) denote the optimal solution to I.P(7)

If there is no variable with fractional value in x*(7),
x*(1) solves (is optimal for) P(7)
If there is at least one variable with fractional value in
x*(1), call it x;%(7), then any optimal solution for P(7)
has x/*(7)=0 or x*(1)=1

— Left branch: x/%(1)=0

— Right branch:  x%(7)=1
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A Pictorial View

feasible IP
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Relationship between Bound and
Tree Depth

Let x*(7) be the optimal solution to I.P(7) with at
least one fractional variable x,*(7)

Let the optimal solution value for I.P(7) be denoted
()
Let LP(2) = LLP(1) + [>x*(1) = 0 orx*(1) = 1]
Let the optimal solution value for [.P(2) be denoted
)
Then

) = @)
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Tree Pruning

Incumbent:
Current best

feasible (IP)
solution value = z;

If z*(LP(2)) > z,5,, PRUNE (FATHOM) tree at node 2
(solutions on the LHS of tree cannot be optimal. 1/2
of the solutions (nodes) do not need to be
evaluated!)

If z*(LP(2)) is integral, PRUNE tree at node 2
(solutions in sub-tree at node 2 cannot be better.)

If LP(2) is infeasible, PRUNE tree at node 2
(solutions in sub-tree at node 2 cannot be feasible.)
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Branch-and-Bound Algorithm

Beginning with rootnode (minimization):
* Bound:

— Solve the current LP with this and all restrictions along
the (back) path to the rootnode enforced

e Prune:

— If optimal LP value is greater than or equal to the
incumbent solution: Prune

— If LP is infeasible: Prune
— If LP 1s integral: Prune and update incumbent solution

e Branch:

— Set some variable to an integer value

* Repeat until all nodes pruned
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Branch-and-Price Solution

Approach

* Branch-and-bound tailored to solve large-
scale integer programs

* Bounding
— Solve LP using column generation at each node
of the branch-and-bound tree
* Branching

~- New columns might have to be generated to find
an optimal solution to the constrained problem

~- Want to design the branching decision so that the
algorithm for the pricing 1s unchanged as the
branch-and-bound tree is processed
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Example Revisited

e
k=1
k=2
k=3
k=4

Cost, 135 75 105
Variable f, =13 f, =13 f, =1/3
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Branch-and-Price: Branching and
Compatibility with the Pricing Problem

* Branching decision for commodity &, f, = 7:
— No pricing problem solution is necessary
— All other variables for £ are removed from the
model

* Branching decision for commodity £, f, = 0:

— The solution to the pricing problem (a shortest
path problem) CANNOT generate path p as the
shortest path, must instead find the zex# shortest
path

— In general, at nodes of depth /in the branch-and-
bound tree, the pricing problem must potentially
generate the £” shortest path
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An Alternative Branching Idea:

Branch on Sw»a// Decisions

* Consider commodity £ whose flow is split
* Assume £ takes 2 paths, p7 and p2
* Let d be the divergence node

o(k)
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Divergence Node

* Let al be the arc out of 4 on p7 and a2 be the arc
out of 4 on p2

o A() = {al, a2, a3, a4}, A(d,al) = {al,a3}, A(d, a2)
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Branching Rule

e (Create two branches, one where

Zx;‘. <0

ijeA(d,al)
e And the other with

fojSO

ijeA(d,a2)
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Branch-and-Bound Results:
Conventional Branching Rule

* Fight telecommunications test problems

— 50 nodes, 130 arcs, 585 commodities

* Computational experiment on an IBM

RS6000/590

* For each of the eight test problems, run time
of 3600 seconds

— No feasible solution was found
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Branch-and-Bound Results: Our
New Branching Rule

problem  columns  nodes gap time (sec)
1119 139869 0.14% 3600
1182 138979 0.5% 3600
1370 126955 1.5% 3600
1457 128489 2.7% 3600
1606 121374 1.5% 3600
1920 102360 1.7% 3600
2142 96483 5.0% 3600

8 ARV 96484 13.0% 3600

All test problems have 50 nodes, 130 arcs, 585 commodities.
Run times on an IBM RS6000/590.
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Conclusions 1

* Choose your formulation caretfully
— Trade-off memory requirements and solution time

— Sub-network formulation can be effective when
low level of congestion in the network

* Problem size often mandates use of combined

column and row generation
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Conclusions 11

* Solution time 1s affected dramatically by
— The complexity of the pricing problem

— Exploitation of problem structure, pre-
processing, LP solver selection, etc.

* Branching strategy should preserve the

structure of the pricing problem

— Branch on “small” decisions, not the variables in
the column generation formulation
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