1.206J/16.77J/ESD.215J Airline Schedule Planning

Cynthia Barnhart
Spring 2003

1.206J/16.77J/ESD.215J Airline

 Schedule Planning: Multi-commodity FlowsOutline

- Applications
- Problem Definition
- Formulations
- Solutions
- Results

Application I

- Package flow problem (express package delivery operation)
- Shipments have specific origins and destinations and must be routed over a transportation network
- Each set of packages with a common origindestination pair is called a commodity
- Time windows (availability and delivery time) associated with packages
- The objective might be to minimize total costs, find a feasible flow, ...

Application II

- Passenger mix problem
- Given a fixed schedule of flights, a fixed fleet assignment and a set of customer demands for air travel service on this fleeted schedule, the airline's objective is to maximize revenues by accommodating as many high fare passengers as possible
- For some flights, demand exceeds seat supply and passengers must be spilled to other itineraries of either the same or another airline

Application III

- Message routing problem
- In a telecommunications or computer network, requirements exist for transmission lines and message requests, or commodities.
- The problem is to route the messages from their origins to their respective destinations at minimum cost

MCF Networks

- Set of nodes
- Each node associated with the supply of or demand for commodities
- Set of arcs
- Cost per unit commodity flow
- Capacity limiting the total flow of all commodities and/ or the flow of individual commodities

MCF Commodity Definitions

- A commodity may originate at a subset of nodes in the network and be destined for another subset of nodes
- A commodity may originate at a single node and be destined for a subset of the nodes
- A commodity may originate at a single node and be destined for a single node

MCF Objectives

- Flow the commodities through the networks from their respective origins to their respective destinations at minimum cost - Expressed as distance, money, time, etc.
- Ahuja, Magnanti and Orlin (1993)-- survey of multi-commodity flow models and solution procedures

MCF Problem Formulations -Linear Programs

- Network flow problems
- Capacity constraints limit flow of individual commodities
- Conservation of flow constraints ensure flow balance for individual commodities
- Flow non-negativity constraints
- With side constraints
- Bundle constraints restrict total flow of $A L L$ commodities on an arc

MCF Constraint Matrix

Network flow problem, commodity $\mathrm{k}=1$

$$
\begin{aligned}
& \text { Network flow } \\
& \text { problem, } \\
& \text { commodity k=2 }
\end{aligned}
$$

> Network flow problem, commodity $\mathrm{k}=3$

> Network flow problem, commodity $\mathrm{k}=4$

Bundle constraints limiting total flow of all commodities to arc capacities

Alternative Formulations for O-D Commodity Case

- Node-Arc Formulation
- Decision variables: flow of commodity k on each arc ij
- Path Formulation
- Decision variables: flow of commodity k on each path for k
- "Tree" or "Sub-network" Formulation
- Define: super commodity: set of all (O-D) commodities with the same origin o (or destination d)
- Decision variables: quantity of the super commodity k ' assigned to each "tree" or "sub-network" for k "
- Formulations are equivalent

Sample Network

Arcs			
i			
1	i	$\underline{\text { cost }}$	$\underline{\text { capy }}$
1	2	1	20
1	3	2	10
2	3	3	20
2	4	4	10
3	4	5	40

Commodities

\#	\underline{o}	\underline{d}	quant
1	1	3	5
2	1	4	15
3	2	4	5
4	3	4	10

Notation

Parameters

- A: set of all network arcs
- K: set of all commodities
- N : set of all network nodes
- $\mathrm{O}(\mathrm{k})[\mathrm{D}(\mathrm{k})]$: origin [destination] node for commodity k
- $c_{i j}{ }^{k}$: per unit cost of commodity k on arc ij
- u_{ij} : total capacity on arc ij (assume $u_{i j}{ }^{k}$ is unlimited for each k and each ij)
- d_{k} : total quantity of commodity k

Decision Variables

- $\mathrm{x}_{\mathrm{ij}}{ }^{\mathrm{k}}$: number of units
of commodity k assigned to arc ij

Node-Arc Formulation

$\operatorname{Minimize} \sum_{i j} \sum_{k} c_{i j}^{k} x_{i j}^{k}$
subject to

$$
\begin{aligned}
\sum_{j} x_{i j}^{k}-\sum_{j} x_{j i}^{k} & =d_{k} \quad \text { if } \quad i \in O(k) \\
& =-d_{k} \text { if } i \in D(k) \\
& =0 \quad \text { otherwise }
\end{aligned}
$$

$$
\sum_{k} x_{i j}^{k} \leq u_{i j} \quad \forall(i, j) \in A
$$

: Bundle constraints

Additional Notation

Parameters

- P^{k} : set of all paths for commodity k , for all k
- c_{p} : per unit cost of commodity k on path p $=\Sigma_{\mathrm{ij}, \mathrm{p}} \mathrm{c}_{\mathrm{ij}}^{\mathrm{k}}$
- $\delta_{i j} \mathrm{p}:=1$ if path p contains arc ij ; and $=0$ otherwise

Decision Variables

- f_{p} : fraction of total quantity of
commodity k assigned to path p

O/D Based Path Formulation

Minimize

$$
\sum_{k} \sum_{p \in P^{k}} d_{k} C_{p} f_{p}
$$

subject to

$$
\begin{aligned}
& \sum_{k} \sum_{p \in P^{k}} d_{k} f_{p} \delta_{i j}^{p} \leq u_{i j} \quad \forall(i, j) \in A \\
& \sum_{p} f_{p}=1 \quad \forall k \in K
\end{aligned}
$$

: Bundle constraints
: Flow balance constraints
: Non-neg. constraints

		≥ 0	$\forall p$	P^{k},	$\in K$	Non-neg. constraints				
	Path									
	$\mathrm{k}=1$		$\mathrm{k}=2$			$\mathrm{k}=3$		$\mathrm{k}=4$	RHS	Dual
a	d_{1}	0	d_{2}	d_{2}	0	0	0	0	$<=u_{a}$	$-\pi_{\text {a }}$
b	0	d_{1}	0	0	d_{2}	0	0	0	$<=u_{b}$	$-\pi_{\mathrm{b}}$
C	d_{1}	0	d_{2}	0	0	d_{3}	0	0	$<=u_{c}$	$-\pi_{\mathrm{c}}$
d	0	0	0	d_{2}	0	0	d_{3}	0	$<=u_{d}$	$-\pi_{\mathrm{d}}$
e	0	0	d_{2}	0	d_{2}	d_{3}	0	d_{4}	$<=u_{\text {e }}$	$-\pi_{\mathrm{e}}$
$\mathrm{k}=1$	1	1							= 1	σ^{1}
$\mathrm{k}=2$			1	1	1				$=1$	σ^{2}
k=3						1	1		$=1$	σ^{3}
k=4								1	= 1	σ^{4}
Cost.	$C_{1} d_{1}$	$C_{2} d_{1}$	$C_{3} d_{2}$	$C_{4} d_{2}$	$C_{5} d_{2}$	$C_{6} d_{3}$	$C_{7} d_{3}$	$C_{8} d_{3}$		
Variable	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}		

Additional Notation

Parameters

- S: set of source nodes $\mathrm{n} \in \mathrm{N}$ for all commodities
- Qs: the set of all subnetworks originating at s
- TC_{q} s: total cost of subnetwork q originating at s
- $\zeta_{\mathrm{p}}{ }^{\mathrm{q}}:=1$ if path p is contained in sub-network q ; and $=0$ otherwise

Decision Variables

- $\mathrm{R}_{\mathrm{q}}{ }^{\text {s }}$: fraction of total quantity of the super commodity originating at s assigned to subnetwork q

Sub-network Formulation

$$
\text { Minimize } \sum_{s \in S} \sum_{q \in Q^{s}}\left(\sum_{k \in q} \sum_{p \in P^{k}} C_{p} \zeta_{p}^{q} d_{k}\right) R_{q}^{s}
$$

subject to

$$
\begin{aligned}
& \sum_{s} \sum_{q \in Q^{s}}\left(\sum_{k \in s} \sum_{p \in P^{k}} d_{k} \delta_{i j}^{p}\right) R_{q}^{s} \zeta_{p}^{q} \leq u_{i j} \forall(i, j) \in A \\
& \sum_{q \in Q^{s}} R_{q}^{s}=1 \quad \forall s \in S \\
& R_{q}^{s} \geq 0 \quad \forall q \in Q^{s}, s \in S
\end{aligned}
$$

: Capacity Limits on Each Arc
: Mass Balance Requirements
: Nonnegative Path Flow Variables

	Sub- network										
	$\mathrm{o}=1$						$\mathrm{o}=2$		0=3	RHS	Dual
a	$\mathrm{d}_{1}+\mathrm{d}_{2}$	$\mathrm{d}_{1}+\mathrm{d}_{2}$	d_{1}	d_{2}	d_{2}	0	0	0	0	<= u_{a}	π_{a}
b		0	d_{2}	d_{1}	d_{1}	$\mathrm{d}_{1}+\mathrm{d}_{2}$	0	0	0	$<=u_{\text {b }}$	π_{b}
c	d_{1}	$\mathrm{d}_{1}+\mathrm{d}_{2}$	d_{1}	0	d_{2}	0	d_{3}	0	0	$<=u_{c}$	π_{c}
d	d_{2}	0	0	d_{2}	0	0	0	d_{3}	0	$<=u_{\text {d }}$	$\pi_{\text {d }}$
e	0	d_{2}	d_{2}	0	d_{2}	d_{2}	d_{3}	0	d_{4}	$<=u_{\text {e }}$	π_{e}
$\mathrm{o}=1$	1	1	1	1	1	1				$=1$	σ^{1}
$\mathrm{o}=2$							1	1		= 1	σ^{2}
$\mathrm{o}=3$									1	$=1$	σ^{3}
Cost.	$T C_{1}^{1}$	$T C_{2}^{1}$	$T C_{3}^{1}$	$T C_{4}^{1}$	TC_{5}^{1}	TC_{6}^{1}	$T C_{1}^{2}$	$T C_{2}^{2}$	$T C_{1}^{3}$		
Variable	R_{1}^{1}	R_{2}^{1}	R_{3}^{1}	R_{4}^{1}	R_{5}^{1}	R_{6}^{1}	R_{1}^{2}	R_{2}^{2}	R_{1}^{3}		

Linear MCF Problem Solution

- Obvious Solution
- LP Solver
- Difficulty
- Problem Size: $(|\mathrm{N}|=\mid$ Nodes $|,|\mathrm{C}|=|$ Commodities \mid, $|\mathrm{A}|=\mid$ Arcs |)
- Node-arc formulation:
- Constraints: $|\mathrm{N}| *|\mathrm{C}|+|\mathrm{A}|$
- Variables: $|\mathrm{A}| *|\mathrm{C}|$
- Path formulation:
- Constraints: $|\mathrm{A}|+|\mathrm{C}|$
- Variables: |Paths for $A L L$ commodities \mid
- Sub-network formulation:
- Constraints: $|\mathrm{A}|+\mid$ Origins \mid
- Variables: |Combinations of Paths by Origin|

General MCF Solution Strategy

- Try to Decompose a Hard Problem Into a Set of Easy Problems

MCF Solution Procedures I

- Partitioning Methods
- Exploit Network Structure to Speed Up Simplex Matrix Computations
- Resource-Directive Decomposition
- Repeat until Optimal:
- Allocate Arc Capacity Among Commodities
- Find Optimal Flows Given Allocation

MCF Solution Procedures II

- Price-Directive Decomposition
- Repeat until Optimal:
- Modify Flow Cost on Arc
- Ignore Bundle Constraints, Find Optimal Flows

Revisiting the Path Formulation

MINIMIZE $\Sigma_{k \in K} \Sigma_{p \in P^{k}} \mathrm{~d}_{k} c_{p} f_{p}$

subject to: $\quad \Sigma_{p \in P^{k}} \sum_{k \in K} \mathrm{~d}_{k} f_{p} \delta_{i j}^{p} \leq u_{i j} \quad \forall \ddot{i j} \in A$

$$
\begin{aligned}
& \Sigma_{p \in P(k)} f_{p}=1 \quad \forall k \in K \\
& f_{p} \geq 0 \quad \forall p \in P^{k}, \forall k \in K
\end{aligned}
$$

By-products of the Simplex

 Algorithm: Dual Variable Values
Duals

$-\pi_{\mathrm{ij}}$: the dual variable associated with the bundle constraint for arc $i j$ (π is non-negative)
σ^{k} : the dual variable associated with the commodity constraints

Economic Interpretation

$\pi_{i j}$: the value of an additional unit of capacity on arc ij
$\sigma{ }^{k} / d_{k}$: the minimal cost to send an additional unit of commodity k through the network

Modified Costs

Definition: Modified cost for arc ij and commodity $k=c_{i j}{ }^{k}+\pi_{i j}$

Definition: Modified cost for path p and commodity $k=\Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p}$

Optimality Conditions for the Path Formulation

 f_{p}^{*} and $\pi_{i j}^{*}, \sigma^{* k}$ are optimal for all k and all ij iff:Primal feasibility is satisfied

$$
\begin{aligned}
& \text { 1. } \Sigma_{p \in P^{k}} \Sigma_{k \in K} \mathrm{~d}_{k} f_{p}^{*} \delta_{i j} \leq u_{i j} \quad \forall i j \in A \\
& \text { 2. } \Sigma_{p \in P(k)} f_{p}^{*}=1 \quad \forall k \in K \\
& \text { 3. } f_{p}^{*} \geq 0 \quad \forall p \in P^{k}, \forall k \in K
\end{aligned}
$$

Complementary slackness is satisfied

$$
\begin{aligned}
& \text { 1. } \pi^{*}{ }_{\mathrm{ij}}\left(\Sigma_{p \in P^{k}} \Sigma_{k \in K} \mathrm{~d}_{k} f_{p}^{*} \delta_{i j}^{p}-u_{i j}\right)=0, \quad \forall i j \in A \\
& \text { 2. } \sigma^{* k}\left(\sum_{p \in P^{k}} f_{p}^{*}-1\right)=0, \quad \forall k \in K
\end{aligned}
$$

Dual feasibility is satisfied (reduced cost is non-negative for a minimization problem)

1. $\left(\mathrm{d}_{k} c_{p}+\Sigma_{i j \in A} \mathrm{~d}_{k} \pi_{i j} \delta_{i j}\right)-\sigma^{k}=\mathrm{d}_{k}\left(\Sigma_{i j \in A}\left(c_{i j}^{k}+\right.\right.$

$$
\left.\left.\pi_{i j}\right) \delta_{i j}^{p}-\sigma_{k}^{k} / \mathrm{d}_{k}\right) \geq 0, \forall p \in P^{k}, \forall k \in K
$$

Multi-commodity Flow Optimality Conditions

- The price for an additional unit of capacity is 0 unless capacity is fully utilized

$$
\text { 1. } \pi_{\mathrm{ij}}^{*}\left(\Sigma_{p \in \mathrm{P}^{k}} \Sigma_{k \in K} \mathrm{~d}_{k} f_{p}^{*} \delta_{i j}^{p}-u_{i j}\right)=0, \forall i j \in A
$$

- A path p for commodity k is utilized only if its "modified cost" (that is, $\left.\sum_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}^{*} \delta_{i j}^{p}\right)\right)$ is minimal, for all paths $p \in P^{k}$

1. Reduced Costs all non-negative:

$$
\begin{array}{r}
c_{p}^{\prime}=\mathrm{d}_{k}\left(\sum_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}^{*}\right) \delta_{i j}^{p}-\sigma^{* k} / \mathrm{d}_{k}\right) \geq 0, \\
\forall p \in P^{k}, \forall k \in K \\
\text { 2. } f_{p}^{*}\left(\sum_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}^{*}\right) \delta_{i j}^{p}-\sigma^{* k} / \mathrm{d}_{k}\right)=0, \\
\forall p \in P^{k}, \forall k \in K
\end{array}
$$

Column Generation- A Price Directive Decomposition

Millions/Billions of Variables

Constraints
Restricted Master
Problem (RMP)

Start
Added
Never Considered

RMP and Optimality Conditions

Consider f_{p}^{*} and $\pi_{i j}^{*}, \sigma^{* k}$ optimal for RMP, then
Primal feasibility is satisfied

$$
\begin{aligned}
& \text { 1. } \Sigma_{p \in P^{k}} \Sigma_{k \in K} \mathrm{~d}_{k} f_{p}^{*} \delta_{j j} \leq u_{i j} \quad \forall i j \in A \\
& \text { 2. } \Sigma_{p \in P(k)} f_{p}^{*}=1 \quad \forall k \in K \\
& \text { 3. } f_{p}^{*} \geq 0 \quad \forall p \in P^{k}, \forall k \in K
\end{aligned}
$$

Complementary slackness is satisfied

1. $\pi^{*}{ }_{\mathrm{ij}}\left(\Sigma_{p \in \mathrm{P}^{k}} \sum_{k \in K} \mathrm{~d}_{k} f_{p}^{*} \delta_{i j}^{p}-u_{i j}\right)=0, \forall i j \in A$
2. $\sigma^{* k}\left(\Sigma_{p \in p^{k}} f_{p}^{*}-1\right)=0, \quad \forall k \in K$

Dual feasibility is guaranteed (reduced cost is nonnegative) ONLY for a path p included in RMP

$$
\begin{aligned}
& \text { 1. }\left(\mathrm{d}_{k} c_{p}+\Sigma_{i j} \in A \mathrm{~d}_{k} \pi_{i j} \delta_{i j}^{p}\right)-\sigma^{k}=\mathrm{d}_{k}\left(\Sigma _ { i j \in A } \left(c_{i j}^{k}+\right.\right. \\
& \left.\left.\pi_{i j}\right) \delta_{i j}+\sigma_{k}^{k} / \mathrm{d}_{k}\right) \geq 0, \forall p \in P^{k}, \forall k \in K
\end{aligned}
$$

LP Solution: Column Generation

- Step 1: Solve Restricted Master Problem (RMP) with subset of all variables (columns)
- Step 2: Solve Pricing Problem to determine if any variables when added to the RMP can improve the objective function value (that is, if any variables have negative reduced cost)
- Step 3: If variables are identified in Step 2, add them to the RMP and return to Step 1; otherwise STOP

Pricing Problem

- Given π, the optimal (non-negative) duals for the current restricted master problem, the pricing problem, for each $p \in P^{k}, k \in K$ is

$$
\min _{p \in P k}\left(\mathrm{~d}_{k}\left(\Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p}-\sigma^{k} / \mathrm{d}_{k}\right)\right.
$$

Or, equivalently:

$$
\min _{p \in P k} \Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p}
$$

$>A$ shortest path problem for commodity k (with modified arc costs)

Example- Iteration 1

Example- Iteration 2

MCF Optimality Conditions

- For each $p \in P^{k}$, for each k, the reduced $\operatorname{cost} c^{\prime} p^{\text {: }}$

$$
\begin{aligned}
-\quad c_{p}^{\prime} & =\left(d_{k} c_{p}+\Sigma_{i j} \in A d_{k} \pi_{i j} \delta_{j}\right)-\sigma^{k}=\Sigma_{i j}\left(d_{k} c_{j}^{k}+d_{k} \pi_{i j}\right) \delta_{i j}^{p}- \\
\sigma^{k} & =\Sigma_{i j}\left(c_{j j}^{k}+\pi_{i j}\right) \delta_{j}^{p}-\sigma^{k} / d_{k} \geq 0
\end{aligned}
$$

- where π, σ are the optimal duals for the current restricted master problem
$-c_{p}^{\prime}=0$, for each utilized path p implies

$$
\Sigma_{i j}\left(d_{k} c_{i j}^{k}+d_{k} \pi_{i j}\right) \delta_{i j}^{p}=\sigma^{k}
$$

or equivalently,

$$
\Sigma_{i j}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{j j}^{p}=\sigma^{k} / d_{k}
$$

- So if, $\left.\min _{p \in P(k)}\right)^{c_{p}^{\prime}}=\sum_{i j}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p^{*}}-\sigma^{k} / d_{k} \geq 0$, the current solution to the restricted master problem is optimal for the original problem
- If $\min _{p \in P(k)} c_{p}^{\prime}=\sum_{i j}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p^{*}}-\sigma^{k} / d_{k}<0, \operatorname{add} p^{*}$ to restricted master problem

Data Set

- Data Set

Nodes		807
Links		1,363
	capacitated	
	uncapacitated	1,071
O/D	\# Origin	17,539
	136	

- Constraint Matrix Size

			Improvement
	row	column	new_row
Node_Arc	$14,155,336$	$23,905,657$	-
Path	18,902	-	
Sub-network	1,499	-	

Computational Results

- Number of Nodes: 807
- Number of Links: 1,363
- Number of Commodities: 17,539
- Computational Result (IBM RS6000, Model 370)
- Path Model: 44 minutes
- Sub-network Model: < 1 minute

Conclusions I

- Choose your formulation carefully
- Trade-off memory requirements and solution time
- Sub-network formulation can be effective when low level of congestion in the network
- Problem size often mandates use of combined column and row generation

Conclusions II

- Solution time is affected dramatically by
- The complexity of the pricing problem
- Exploitation of problem structure, preprocessing, LP solver selection, etc.

