1.206J/16.77J/ESD.215J Airline Schedule Planning

Cynthia Barnhart
Spring 2003

1.206J/16.77J/ESD.215J
 Multi-commodity Network Flows: A Keypath Formulation

- Outline
- Path formulation for multi-commodity flow problems revisited
- Keypath formulation
- Example
- Keypath solution algorithm
- Column generation
- Row generation

Path Notation

Sets

A: set of all network arcs
K : set of all commodities
N : set of all network nodes

Parameters

u_{ij} : total capacity on arc ij
d_{k} : total quantity of commodity k
Pk: set of all paths for commodity k , for all k

Parameters (cont.)

c_{p} : per unit cost of commodity k on path $\mathrm{p}=$ $\Sigma_{i j \in p} c_{i j}^{k}$
$\delta_{i j} \mathrm{p}:=1$ if path p contains
arc ij ; and $=0$ otherwise

Decision Variables

f_{p} : fraction of total quantity of commodity k assigned to path p

The Path Formulation Revisited

MINIMIZE $\Sigma_{k \in K} \Sigma_{p \in P^{k}} \mathrm{~d}_{k} c_{p} f_{p}$

subject to: $\quad \Sigma_{p \in P^{k}} \Sigma_{k \in K} d_{k} f_{p} \delta_{i j} \leq u_{i j} \forall \ddot{i j \in A}$

$$
\begin{aligned}
& \Sigma_{p \in P^{k}} f_{p}=1 \quad \forall k \in K \\
& f_{p} \geq 0 \quad \forall p \in P^{k}, \forall k \in K
\end{aligned}
$$

The Keypath Concept

- The path formulation for MCF problems can be recast equivalently as follows:
- Assign all flow of commodity k to a selected path p, called the keypath, for each commodity $k \in K$
- Often the keypath is the minimum cost path for k
- The resulting flow assignment is often infeasible
- One or more arc capacity constraints are violated
- If the resulting flows are feasible and the keypaths are minimum cost, the flow assignment is optimal
- Solve a linear programming formulation to minimize the cost of adjusting flows to achieve feasibility
- Flow adjustments involve removing flow of k from its keypath p and placing it on alternative path $p^{\prime} \in P^{k}$, for each $k \in K$

Additional Keypath Notation

Parameters

$p(k):$ keypath for commodity k
$Q_{i j}$: total initial (flow assigned to keypaths) on arc $i j$
$=\Sigma_{k \in K} d_{k} \delta_{j}^{p(k)}$
$c_{p(k)}^{r}:=c_{r}-c_{p(k)}=\Sigma_{i j \in A} c_{i j} \delta_{i j}^{r}-\Sigma_{i j \in A} c_{i j} \delta_{i j}^{p(k)} ;$ change in cost when one unit of commodity k is shifted from keypath $p(k)$ to path r (Note: typically non-negative if $p(k)$ has minimum cost)

Decision Variables

$f_{p(k)}$: fraction of total quantity of commodity k removed from keypath $p(k)$ to path r

The Keypath Formulation

$\operatorname{Min} \sum_{k \in K} \sum_{r e^{P}}\left(c_{p(t)}{ }^{r}\right) d_{k} f_{p(t)}^{r}$
s.t.:

$$
\begin{array}{ll}
-\sum_{k \in K} \sum_{r \in P^{k}} \delta_{i j}^{p(k)} d_{k} f_{p(k)}^{r}+\sum_{k \in K} \sum_{r \in P^{k}} \delta_{i j}^{r} d_{k} f_{p(k)}^{r} & \\
\leq u_{i j}-Q_{i j} & \forall i j \in A \\
\sum_{r \in P^{k}} f_{p(k)}^{r} \leq 1 & \forall k \in K \\
f_{p(k)}^{r} \geq 0 & \forall r \in P^{k} \quad \forall k \in K
\end{array}
$$

Associated Dual Variables

Duals

$-\pi_{\mathrm{ij}}$: the dual variable associated with the bundle constraint for arc $i j$ (π is non-negative)
$-\sigma^{k}$: the dual variable associated with the commodity constraints (σ is non-negative)

Economic Interpretation

$\pi_{i j}$: the value of an additional unit of capacity on arc ij
σ^{k} / d_{k} : the minimal cost to remove an additional unit of commodity k from its keypath and place on another path

Optimality Conditions for the Path Formulation

f_{p}^{*} and $\pi_{i j}^{*}, \sigma^{* k}$ are optimal for all k and all ij if:

1. Primal feasibility is satisfied
2. Complementary slackness is satisfied
3. Dual feasibility is satisfied (reduced cost is non-negative for a minimization problem)

Modified Costs

Definition: Reduced cost for path r, commodity k

$$
\begin{aligned}
& =\Sigma_{i j \in A} c_{i j}^{k} d_{k} \delta_{i j}^{r}-\Sigma_{i j \in A} c_{i j}^{k} d_{k} \delta_{i j} p(k)+\Sigma_{i j \in A} \pi_{i j} d_{k} \delta_{i j} \\
& -\Sigma_{i j \in A} \pi_{i j} d_{k} \delta_{i j} p(k)+\sigma^{k} \\
& =\Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{r}- \\
& \Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j} p(k)+\sigma^{k} / d_{k}
\end{aligned}
$$

Definition: Let modified cost for arc $i j$ and commodity $k=c_{i j}^{k}+\pi_{i j}$
$>$ Reduced cost is non-negative for all commodity k variables if the modified cost of path r equals or exceeds the modified cost of $p(k)$ less $\sigma^{k /} d_{k}$

Column Generation- A Price Directive Decomposition

Millions/Billions of Variables

Constraints
Restricted Master
Problem (RMP)

Start
Added
Never Considered

LP Solution: Column Generation

- Step 1: Solve Restricted Master Problem (RMP) with subset of all variables (columns)
- Step 2: Solve Pricing Problem to determine if any variables when added to the RMP can improve the objective function value (that is, if any variables have negative reduced cost)
- Step 3: If variables are identified in Step 2, add them to the RMP and return to Step 1; otherwise STOP

Pricing Problem

- Given π and σ^{k}, the optimal (non-negative) duals for the current restricted master problem and the keypath $p(k)$, the pricing problem, for each $k \in K$ is

$$
\begin{aligned}
\min _{r \in P k} & \left(\mathrm { d } _ { k } \left(\Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{r}-\Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p(k)}\right.\right. \\
& \left.+\sigma^{k /} d_{k}\right)
\end{aligned}
$$

Or, letting $C=\Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{p(k)}-\sigma^{k /} d_{k}$ equivalently:

$$
\min _{r \in P k} \Sigma_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{r}-C
$$

$>$ A shortest path problem for commodity k (with modified arc costs). If min $r \in P k \sum_{i j \in A}\left(c_{i j}^{k}+\pi_{i j}\right) \delta_{i j}^{r}-C \geq$ 0 , then the original problem is solved, else add column corresponding to $x_{p(k)^{r}}$ to the master problem

Example- Iteration 1

Let $p(1)=2 ; p(2)=4 ; p(3)=7 ; p(4)=8(* *$ denotes keypath $)$

	Path									
	k=1		$\mathrm{k}=2$			k=3		$\mathrm{k}=4$	RHS	Dual
a	5	0	15	15-15	0-15	0	0	0	< 20	$\pi_{\mathrm{a}}=0$
b	-5	5-5	0	0	15	0	0	0	<= 10	$\pi_{\mathrm{b}}=0$
c	5	0	15	0	0	5	0	0	$<=20$	$\pi_{\mathrm{c}}=0$
d	0	0	0-15	15-15	0-15	0-5	5-5	0	$<=10$	$\pi_{\mathrm{d}}=2$
e	0	0	15	0	15	5	0	10-10	$<=40$	$\pi_{\mathrm{e}}=0$
k=1	1	1-1							<= 1	σ^{1}
$\mathrm{k}=2$			1	1-1	1				<= 1	σ^{2}
k=3						1	1-1		<= 1	σ^{3}
k=4								1-1	<= 1	σ^{4}
Cost.	20-10	10-10	165-75	75-75	135-75	40-30	30-30	50-50		
Variable	$f_{2}^{1}=0$	$f_{2}^{2 * *}$	f_{4}^{3}	$f_{4}^{4 *}$	$f_{4}^{5}=0$	$f_{7}^{6}=2$	$f_{7}^{7}{ }^{* *}$	$f_{8}^{8 *}$		

NOTE: Gray columns not included in keypath formulation; purple elements are initial keypath matrix

Example- Iteration 2

Let $p(1)=2 ; p(2)=4 ; p(3)=7 ; p(4)=8(* *$ denotes keypath $)$

	Path									
	k=1		k=2			k=3		k=4	RHS	Dual
a	5	0	15	15-15	0-15	0	0	0	$<=20$	$\pi_{\mathrm{a}}=0$
b	-5	5-5	0	0	15	0	0	0	< $=10$	$\pi_{\mathrm{b}}=0$
c	5	0	15	0	0	5	0	0	$<=20$	$\pi_{\mathrm{c}}=0$
d	0	0	0	15-15	0-15	0-5	5-5	0	< $=10$	$\pi_{\text {d }}=4$
e	0	0	15	0	15	5	0	10-10	$<=40$	$\pi_{\mathrm{e}}=0$
k=1	1	1-1							<=	σ^{1}
k=2			1	1-1	1				< $=1$	σ^{2}
k=3						1	1-1		< $=1$	$\sigma^{3}=10$
k=4								1-1	$<=1$	${ }^{4}$
Cost.	20-10	10-10	165	75-75	135-75	40-30	30-30	50-50		
Variable	$f_{2}^{1}=0$	$f_{2}^{2}{ }^{\text {** }}$	f_{4}^{3}	$f^{4 *}$	$f_{4}^{5}=1 / 3$	$f_{7}^{6}=1$	$f_{7}^{7 *}$	$f_{8}^{8 *}$		

$2^{\text {nd }}$ iteration: no columns price out, one constraint for commodity 3 is violated and added; and the problem is resolved- feasibility and optimality achieved

Column Generation

Row Generation

Column and Row Generation:

 Constraint Matrix

The Benefit of the Keypath Concept

- We are now minimizing the objective function and most of the objective coefficients are whitu. Therefore, this will guide the decision variables to values of
\qquad
- How does this help?

Solution Procedure

- Use Both Column Generation and Row Generation
- Actual flow of problem
- Step 1- Define RMP for Iteration 1: Set $\mathrm{k}=1$. Denote an initial subset of columns $\left(\mathrm{A}_{1}\right)$ which is to be used.
- Step 2- Solve RMP for Iteration k: Solve a problem with the subset of columns A_{k}.
- Step 3- Generate Rows: Determine if any constraints are violated and express them explicitly in the constraint matrix.
- Step 4- Generate Columns: Price some of the remaining columns, and add a group (A^{*}) that have a reduced cost less than zero, i.e., $A_{k+1}=\left[A_{k} \mid A^{*}\right]$
- Step 5-Test Optimality: If no columns or rows are added, terminate. Otherwise, $\mathrm{k}=\mathrm{k}+1$, go to Step 2

Conclusions

- Variable redefinition
- Allows relaxation of constraints and subsequent (limited) cut generation
- Does not alter the pricing problem solution
- Shortest paths with modified costs
- Allows problems with many commodities, as well as a large underlying network, to be solved with limited memory requirements

