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1.206J/16.77J/ESD.215J Airline 

Schedule Planning:  Multi-commodity 

Flows
Outline

– Applications

– Problem definition

– Formulations

– Solutions

– Computational results

– Integer multi-commodity network flow problems

– Integer multi-commodity network flow solutions
• Branch-and-price:  combination of branch-and-bound and 

column generation

– Results
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Application I
• Package flow problem (express package 

delivery operation)
– Shipments have specific origins and destinations 

and must be routed over a transportation 
network

– Each set of packages with a common origin-
destination pair is called a commodity
• Time windows (availability and delivery time) 

associated with packages

– The objective might be to minimize total costs, 
find a feasible flow, ...
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Application II
• Passenger mix problem

– Given a fixed schedule of flights, a fixed 
fleet assignment and a set of customer 
demands for air travel service on this 
fleeted schedule, the airline's objective is to 
maximize revenues by accommodating as 
many high fare passengers as possible

– For some flights, demand exceeds seat 
supply and passengers must be spilled to
other itineraries of either the same or 
another airline
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Application III

• Message routing problem
– In a telecommunications or computer 

network, requirements exist for 
transmission lines and message requests, or 
commodities.

– The problem is to route the messages from 
their origins to their respective destinations 
at minimum cost
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MCF Networks

• Set of nodes
– Each node associated with the supply of or 

demand for commodities

• Set of arcs
– Cost per unit commodity flow 

– Capacity limiting the total flow of all 
commodities and/ or the flow of 
individual commodities
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MCF Commodity Definitions

• A commodity may originate at a subset of 

nodes in the network and be destined for 

another subset of nodes

• A commodity may originate at a single node 

and be destined for a subset of the nodes

• A commodity may originate at a single node 

and be destined for a single node
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MCF Objectives

• Flow the commodities through the networks 
from their respective origins to their 
respective destinations at minimum cost
– Expressed as distance, money, time, etc.

• Ahuja, Magnanti and Orlin (1993)-- survey of 
multi-commodity flow models and solution 
procedures
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MCF Problem Formulations --

Linear Programs

• Network flow problems 
– Capacity constraints limit flow of individual 

commodities

– Conservation of flow constraints ensure flow 
balance for individual commodities

– Flow non-negativity constraints

• With side constraints
– Bundle constraints restrict total flow of ALL

commodities on an arc
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MCF Constraint Matrix
Network flow 

problem,

commodity k=1

Bundle constraints limiting total flow of all commodities to arc capacities

Network flow 

problem,

commodity k=2

Network flow 

problem,

commodity k=3

Network flow 

problem,

commodity k=4
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Alternative Formulations for O-D 

Commodity Case

• Node-Arc Formulation 
– Decision variables:  flow of commodity k on each arc ij

• Path Formulation 
– Decision variables:  flow of  commodity k on each path for 

k

• “Tree” or “Sub-network” Formulation 
– Define:  super commodity:  set of all (O-D) commodities 

with the same origin o (or destination d)
– Decision variables: quantity of the super commodity k’

assigned to each “tree” or “sub-network” for k’

• Formulations are equivalent
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Sample Network

Commodities

# o d quant

1 1 3 5

2 1 4 15

3 2 4 5

4 3 4 10

Arcs

i j cost capy

1 2      1 20

1 3      2 10

2 3      3 20

2 4      4 10

3 4      5 40

1

2

3

4

a

b

c

d

e
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Notation

Parameters
• A: set of all network arcs 

• K: set of all commodities

• N:  set of all network nodes

• O(k) [D(k)]:  origin [destination] 
node for commodity k

• cij
k :  per unit cost of 

commodity k on arc ij

• uij :  total capacity on arc ij
(assume uij

k is unlimited for 
each k and each ij)

• dk :  total quantity of 
commodity k 

Decision Variables

• xij
k :  number of units 

of commodity k 

assigned to arc ij
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Node-Arc Formulation
Minimize  c xij

k

ij

k

kij

subject to 

otherwise

kDid

kOidxx

k

k

j

k

ji

j

k

ij

0

)(if

)(if

 : Conservation of Flow 

x u i j Aij

k

k
ij ( , )  : Bundle constraints 

x i j A k Kij

k 0 ( , ) ,  : Nonnegativity constraints 
k 1 k 2 k 3 k 4

a b c d e a b c d e a b c d e a b c d e R H S

1 1 1 =  d 1

2 - 1 1 1 =  0

3 - 1 - 1 1 =  - d 1

4 - 1 - 1 =  0

1 1 1 =  d 2

2 - 1 1 1 =  0

3 - 1 - 1 1 =  0

4 - 1 - 1 =  - d 2

1 1 1 =  0

2 - 1 1 1 =  d 3

3 - 1 - 1 1 =  0

4 - 1 - 1 =  - d 3

1 1 1 =  0

2 - 1 1 1 =  0

3 - 1 - 1 1 =  d 4

4 - 1 - 1 =  - d 4

a 1 1 1 1  u a

b 1 1 1 1  u b

c 1 1 1 1  u c

d 1 1 1 1  u d

e 1 1 1 1  u e

c a
1 c b

1 c c
1 c d

1 c e
1 c a

2 c b
2 c c

2 c d
2 c e

2 c a
3 c b

3 c c
3 c d

3 c e
3 c a

4 c b
4 c c

4 c d
4 c e

4

x a
1 x b

1 x c
1 x d

1 x e
1 x a

2 x b
2 x c

2 x d
2 x e

2 x a
3 x b

3 x c
3 x d

3 x e
3 x a

4 x b
4 x c

4 x d
4 x e

4
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Additional Notation

Parameters
• Pk:  set of all paths for 

commodity k, for all k

• cp :  per unit cost of 
commodity k on path p 
= ij p cij

k

• ij
p :  = 1 if path p 

contains arc ij; and = 0 
otherwise

Decision Variables

• fp:  fraction of total 

quantity of 

commodity k 

assigned to path p
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O/D Based Path Formulation

k Pp

ppk
k

fCd

subject to

d f u i j Ak p ij

p

p P

ij

k k

( , ) : Bundle constraints

f k Kp

p P k

1 : Flow balance constraints

f p P k Kp

k
0 , : Non-neg. constraints

 Path          

 k=1  k=2   k=3  k=4 RHS Dual 

a d1 0 d2 d2 0 0 0 0 <= ua a

b 0 d1 0 0 d2 0 0 0 <= ub b

c d1 0 d2 0 0 d3 0 0 <= uc c

d 0 0 0 d2 0 0 d3 0 <= ud d

e 0 0 d2 0 d2 d3 0 d4 <= ue e

k=1 1 1        = 1 

k=2   1 1 1     = 1 

k=3      1 1   = 1 

k=4        1  = 1 

Cost. 
11 dC 12dC 23dC 24dC 25dC 36dC 37dC 38dC

Variable 
1f 2f 3f 4f 5f 6f 7f 8f

Minimize



12/10/2003 Barnhart 1.206J/16.77J/ESD.215J 17

Additional Notation

Parameters
• S:  set of source nodes 

n N for all commodities

• Qs: the set of all sub-
networks originating at s 

• TCq
s: total cost of sub-

network q originating at s

• p
q :  = 1 if path p is 

contained in sub-network 
q; and = 0 otherwise

Decision Variables

• Rq
s :  fraction of 

total quantity of the 

super commodity 

originating at s 

assigned to sub-

network q
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 Sub- network          

 o=1      o=2  o=3 RHS Dual 

a d1+ d2 d1+ d2 d1 d2 d2 0 0 0 0 <= ua a

b 0 0 d2 d1 d1 d1+ d2 0 0 0 <= ub b

c d1 d1+ d2 d1 0 d2 0 d3 0 0 <= uc c

d d2 0 0 d2 0 0 0 d3 0 <= ud d

e 0 d2 d2 0 d2 d2 d3 0 d4 <= ue e

o=1 1 1 1 1 1 1     = 1 

o=2       1 1   = 1 

o=3         1  = 1 

Cost. TC1

1 TC2

1 TC3

1 TC4

1 TC5

1 TC6

1 TC1

2 TC2

2 TC1

3

Variable R1

1 R2

1 R3

1 R4

1 R 5

1 R 6

1 R1

2 R2

2 R1

3

Sub-network Formulation
q

s Qq

k

qk Pp

q

pp RdC
s k

)(
s

subject to

s

ij

Qq

q
pq

sk Pp

p
ijk AjiuRd

s k

),()( s
: Capacity Limits on Each Arc

R s s Sq

q Q
s

1 : Mass Balance Requirements

R s q Q s Sq
s0 , : Nonnegative Path Flow Variables

Minimize
S
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Linear MCF Problem Solution

• Obvious Solution
– LP Solver

• Difficulty
– Problem Size:  (|N|=|Nodes|, |C|=|Commodities|, 

|A|=|Arcs|)
• Node-arc formulation:

– Constraints:  |N|*|C| + |A|

– Variables:  |A|*|C|

• Path formulation:

– Constraints:  |A| + |C|

– Variables:  |Paths for ALL commodities|

• Sub-network formulation:

– Constraints:  |A|+|Origins|

– Variables:  |Combinations of Paths by Origin|
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General MCF Solution Strategy

• Try to Decompose a Hard Problem Into a Set of 

Easy Problems
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MCF Solution Procedures I

• Partitioning Methods

– Exploit Network Structure to  Speed Up Simplex 

Matrix Computations

• Resource-Directive Decomposition

– Repeat until Optimal:

• Allocate Arc Capacity Among Commodities

• Find Optimal Flows Given Allocation
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MCF Solution Procedures II

• Price-Directive Decomposition

– Repeat until Optimal:

• Modify Flow Cost on Arc

• Ignore Bundle Constraints, Find Optimal Flows
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Revisiting the Path 

Formulation

MINIMIZE k K p Pk dk cp fp

subject to: p Pk k K dk fp ij
p uij ij A

p P(k) fp = 1 k K

fp 0 p Pk, k K
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By-products of the Simplex 

Algorithm:  Dual Variable Values

Duals
- ij: the dual variable associated with the bundle 

constraint for arc ij ( is non-negative)
k :  the dual variable associated with the commodity 
constraints

Economic Interpretation
ij : the value of an additional unit of capacity on arc ij
k/dk : the minimal cost to send an additional unit of 
commodity k through the network
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Modified Costs

Definition: Modified cost for arc ij and 
commodity k  =  cij

k+ ij

Definition: Modified cost for path p and
commodity k = ij A (cij

k + ij ) ij
p



10-Dec-03 1.224J/ESD.204J 26

Optimality Conditions for the Path Formulation

f*p and *ij , *k are optimal for all k and all ij iff:
Primal feasibility is satisfied

1. p Pk k K dk f*p ij
p uij ij A

2. p P(k) f*p = 1 k K

3. f*p 0 p Pk, k K

Complementary slackness is satisfied

1. *ij( p Pk k K dk f*p ij
p - uij ) = 0, ij A

2. *k ( p Pk f*p – 1) = 0,  k K

Dual feasibility is satisfied (reduced cost is non-negative 
for a minimization problem)

1. (dk cp + ij A dk ij ij
p ) - k = dk ( ij A (cij

k +

ij) ij
p - k /dk ) 0, p Pk, k K
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Multi-commodity Flow 

Optimality Conditions

• The price for an additional unit of capacity is 0 
unless capacity is fully utilized

1. *ij( p Pk k K dk f*p ij
p - uij ) = 0, ij A

• A path p for commodity k is utilized only if its 
“modified cost” (that is, ij A (cij

k + *ij ij
p)) is

minimal, for all paths p Pk

1. Reduced Costs all non-negative:
c’p = dk ( ij A (cij

k + *ij) ij
p - *k /dk ) 0,

p Pk, k K

2. f*p ( ij A (cij
k + *ij ) ij

p - *k /dk ) = 0, 

p Pk, k K
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Column Generation- A Price 

Directive Decomposition
C

o
n

st
ra

in
ts

Millions/Billions of Variables

Never Considered

S
ta

rt

A
d

d
e

d

Restricted Master 

Problem (RMP)
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RMP and Optimality Conditions
Consider f*p and *ij , *k optimal for RMP, then

Primal feasibility is satisfied

1. p Pk k K dk f*p ij
p uij ij A

2. p P(k) f*p = 1 k K

3. f*p 0 p Pk, k K

Complementary slackness is satisfied

1. *ij( p Pk k K dk f*p ij
p - uij ) = 0, ij A

2. *k ( p Pk f*p – 1) = 0,  k K

Dual feasibility is guaranteed (reduced cost is non-
negative)  ONLY for a path p included in RMP

1. (dk cp + ij A dk ij ij
p ) - k = dk ( ij A (cij

k +

ij) ij
p - k /dk ) 0, p Pk, k K
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LP Solution:  Column Generation

• Step 1:  Solve Restricted Master Problem (RMP) with 

subset of all variables (columns)

• Step 2:  Solve Pricing Problem to determine if any 

variables when added to the RMP can improve the 

objective function value (that is, if any variables 

have negative reduced cost)

• Step 3:  If variables are identified in Step 2, add 

them to the RMP and return to Step 1; otherwise 

STOP
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Pricing Problem 

• Given (non-negative) and k (unrestricted),
the optimal duals for the current restricted 

master problem the pricing problem, for 

each p Pk, k K is

min p Pk (dk ( ij A (cij
k + ij) ij

p - k /dk )

Or, equivalently:

min p Pk ij A (cij
k + ij) ij

p

A shortest path problem for commodity k (with 

modified arc costs)
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Example- Iteration 1

 Path          

 k=1  k=2   k=3  k=4 RHS Dual 

a 5 0 15 15 0 0 0 0 <= 20 a= 0

b 0 5 0 0 15 0 0 0 <= 10 b= 0 

c 5 0 15 0 0 5 0 0 <= 20 c= 0 

d 0 0 0 15 0 0 5 0 <= 10 d= 0 

e 0 0 15 0 15 5 0 10 <= 40 e= 0 

k=1 1 1            = 1 = 10

k=2  1 1 1     = 1 = 135

k=3 1 1   = 1 = 20

k=4       1  = 1 = 50

Cost. 20 10 135 75 105 40 20 50
Variable 

1f 2f =1
3f =1

4f 5f 6f 7f =1
8f =1
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Example- Iteration 2

 Path          

 k=1  k=2   k=3  k=4 RHS Dual 

a 5 0 15 15 0 0 0 0 <= 20 a= 0

b 0 5 0 0 15 0 0 0 <= 10 b= 2 

c 5 0 15 0 0 5 0 0 <= 20 c= 0 

d 0 0 0 15 0 0 5 0 <= 10 d= 4 

e 0 0 15 0 15 5 0 10 <= 40 e= 0 

k=1 1 1           = 1 = 20

k=2  1 1 1    = 1 = 135

k=3 1 1   = 1 = 40

k=4       1  = 1 = 50

Cost. 20 10 135 75 105 40 20 50
Variable 

1f 2f =1
3f =1/3 4f = 1/3

5f =1/3
6f 7f =1

8f =1
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MCF Optimality Conditions

• For each p Pk, for each k, the reduced cost c p:

– c p (dk cp + ij A dk ij ij
p ) - k = ij (dkcij

k + dk ij) ij
p -

k = 
ij (cij

k + ij) ij
p - k /dk

• where are the optimal duals for the current restricted 
master problem

– c p for each utilized path p implies

ij (dkcij
k + dk ij) ij

p = k

or equivalently,

ij (cij
k + ij) ij

p = k/dk

– So if, minp P(k) c p
=

ij (cij
k + ij) ij

p* - k/dk the
current solution to the restricted master problem is 
optimal for the original problem

– If minp P(k) c p = ij (cij
k + ij) ij

p* - k/dk add p* to
restricted master problem
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Data Set
• Data Set

• Constraint Matrix Size

Nodes 807

Link s 1,363

c apac itated 292

unc apac itated 1,071

O /D 17,539

# O rigin 136

Improvement

row column new_row

Node_Arc 14,155,336 23,905,657  -

Path 18,902  - 17,832

Sub-network 1,499  - 428
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Computational Results

• Number of Nodes: 807

• Number of Links: 1,363

• Number of Commodities: 17,539

• Computational Result (IBM RS6000, Model 

370)

– Path Model: 44 minutes

– Sub-network Model: < 1 minute
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LP Computational Experiment

• Test effect of adding most negative 

reduced cost column for each 

commodity vs. adding several negative 

reduced cost columns for each 

commodity
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Generating Several Columns Per 

Commodity

• Select any basic column (fp has reduced cost 

= 0) for some path p and commodity k, call it 

the key(k)

• Add all simple paths representing symmetric 

difference between most negative reduced 

cost path and key(k)
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Example

key(k)

p1- most negative reduced cost path for k

Add to LP:
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LP Solution: 
One Path per Commodity

problem iterations columns time (sec)

    

1 3747 9125 240 

2 3572 9414 246 

3 3772 10119 268 

4 3663 10101 289 

5 10128 10624 325 

6 8509 27041 1289 

7 9625 29339 1332 

8 7135 22407 842 

9 9500 30132 1369 

10 7498 23571 833 

301 nodes, 497 arcs, 1320 commodities.

Times are on an IBM RS6000/590.
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LP Solution: 
All Simple Paths for Each Commodity

problem iterations columns time (sec)

1 2455 8855 162 

2 2690 10519 199 

3 2694 10617 224 

4 2511 10496 218 

5 2706 11179 234 

6 4391 25183 662 

7 4208 23880 607 

8 3237 17587 398 

9 4191 20472 501 

10 3633 21926 420 

301 nodes, 497 arcs, 1320 commodities.

Times are on an IBM RS6000/590.



12/10/2003 Barnhart 1.206J/16.77J/ESD.215J 42

Integer Multi-Commodity 

Network Flows

• Consider the modified multi-commodity 
network flow problem:
– Added integrality restriction that each 

commodity must be assigned to exactly 
one path

• fp (0.1), p Pk

–Solution procedure: branch-and-
bound, specialized to handle large-
scale problems
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Integer Multicommodity Flows:  

Problem Formulation

MINIMIZE k K p Pk dk cp fp

subject to: p Pk k K dk fp ij
p uij ij A

p P(k) fp = 1 k K

fp (0,1) p Pk, k K
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Branch-and-Bound:  A Solution 

Approach for Binary Integer 

Programs
ff11 = 1 = 1 

All possible solutions at leaf

nodes of tree (2n solutions, where 

n is the number of variables)

ff22 = 0 = 0 ff22 = 1 = 1 

ff11 = 0 = 0 

ff22 = 1 = 1 ff22 = 0 = 0 

ff33 = 1 = 1 ff33 = 0 = 0 
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Branch-and-Bound:  A 

Solution Approach for Binary 

Integer Programs
• Branch-and-Bound is a smart enumeration

strategy:

– With branching, all possible solutions (e.g., 2number

of path for all commodities) are enumerated

– With bounding, only a (usually) small subset of 

possible solutions are evaluated before a provably 

optimal solution is found
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Bounding: The Linear 

Programming (LP) Relaxation
• Consider the linear path-based MCF problem 

formulation
– Objective is to minimize

• The LP relaxation replaces 

fp 0,1

with

1 fp 0

• Let zLP
* represent the optimal LP solution and let zIP

*

represent the optimal IP solution
zLP

* zIP
*

– LP’s provide a bound on the lowest possible value of the 
optimal integer solution
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Branching

• Consider an IP with binary restrictions on all 
variables, denoted P(1)

• Let LP(1) denote the linear programming relaxation of 
P(1) and let x*(1) denote the optimal solution to LP(1)

• If there is no variable with fractional value in x*(1),
x*(1) solves (is optimal for) P(1)

• If there is at least one variable with fractional value in 
x*(1), call it xl*(1), then any optimal solution for P(1)
has xl*(1)=0 or xl*(1)=1
– Left branch: xl*(1)=0

– Right branch:  xl*(1)=1
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A Pictorial View

feasible IPfeasible IP

feasible LPfeasible LP
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Relationship between Bound and 

Tree Depth

• Let x*(1) be the optimal solution to LP(1) with at 
least one fractional variable xl*(1)

• Let the optimal solution value for LP(1) be denoted 
z*(1)

• Let LP(2) = LP(1) + [xl*(1) = 0 or xl*(1) = 1]

• Let the optimal solution value for LP(2) be denoted 
z*(2)

• Then 
z*(1) z*(2)
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Tree Pruning

x1 = 1 x1 = 1 x1=0x1=0

x2=1x2=1 x2=1x2=1 x2=0x2=0

x3=1x3=1 x3=0x3=0

Incumbent:

Current best 

feasible (IP) 

solution value = zIP

If z*(LP(2)) zIP, PRUNE (FATHOM) tree at node 2 

(solutions on the LHS of tree cannot be optimal.  1/2 

of the solutions (nodes) do not need to be 

evaluated!)

1

5

2 3

74 6

x2=0x2=0

x3=0x3=0 x3=1x3=1

If z*(LP(2)) is integral, PRUNE tree at node 2 

(solutions in sub-tree at node 2 cannot be better.)

If LP(2) is infeasible, PRUNE tree at node 2 

(solutions in sub-tree at node 2 cannot be feasible.)
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Branch-and-Bound Algorithm

Beginning with rootnode (minimization):

• Bound: 
– Solve the current LP with this and all restrictions along 

the (back) path to the rootnode enforced

• Prune:
– If optimal LP value is greater than or equal to the 

incumbent solution:  Prune

– If LP is infeasible: Prune

– If LP is integral: Prune and update incumbent solution

• Branch:
– Set some variable to an integer value

• Repeat until all nodes pruned



12/10/2003 Barnhart 1.206J/16.77J/ESD.215J 52

Branch-and-Price Solution 

Approach

• Branch-and-bound tailored to solve large-
scale integer programs

• Bounding
– Solve LP using column generation at each node 

of the branch-and-bound tree

• Branching
– New columns might have to be generated to find 

an optimal solution to the constrained problem

– Want to design the branching decision so that the 
algorithm for the pricing is unchanged as the 
branch-and-bound tree is processed
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Example Revisited

 Path          

 k=1  k=2   k=3  k=4 RHS Dual 

a 5 0 15 15 0 0 0 0 <= 20 a= 0

b 0 5 0 0 15 0 0 0 <= 10 b= 2 

c 5 0 15 0 0 5 0 0 <= 20 c= 0 

d 0 0 0 15 0 0 5 0 <= 10 d= 4 

e 0 0 15 0 15 5 0 10 <= 40 e= 0 

k=1 1 1           = 1 = 20

k=2  1 1 1    = 1 = 135

k=3 1 1   = 1 = 40

k=4       1  = 1 = 50

Cost. 20 10 135 75 105 40 20 50
Variable 

1f 2f =1
3f =1/3 4f = 1/3

5f =1/3
6f 7f =1

8f =1
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Branch-and-Price:  Branching and 

Compatibility with the Pricing Problem

• Branching decision for commodity k, fp = 1:
– No pricing problem solution is necessary
– All other variables for k are removed from the 

model

• Branching decision for commodity k, fp = 0:
– The solution to the pricing problem (a shortest 

path problem) CANNOT generate path p as the 
shortest path, must instead find the next shortest
path

– In general, at nodes of depth l in the branch-and-
bound tree, the pricing problem must potentially 
generate the kth shortest path
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An Alternative Branching Idea:

Branch on Small Decisions

• Consider commodity k whose flow is split

• Assume k takes 2 paths, p1 and p2

• Let d be the divergence node

p1o(k)

d(k)p2

d
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Divergence Node

• Let a1 be the arc out of d on p1 and a2 be the arc 

out of d on p2

• A(d) = {a1, a2, a3, a4}, A(d,a1) = {a1,a3}, A(d, a2) 

= {a2, a4}

d a2

a4

a1

a3
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Branching Rule

• Create two branches, one where 

• And the other with

xij
k

ij A d a( , )1

0

xij
k

ij A d a( , )2

0
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Branch-and-Bound Results:

Conventional Branching Rule

• Eight telecommunications test problems 
– 50 nodes, 130 arcs, 585 commodities

• Computational experiment on an IBM 
RS6000/590

• For each of the eight test problems, run time 
of 3600 seconds
– No feasible solution was found
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Branch-and-Bound Results:  Our 

New Branching Rule
problem columns nodes gap time (sec)

1 1119 139869 0.14% 3600

2 1182 138979 0.5% 3600

3 1370 126955 1.5% 3600

4 1457 128489 2.7% 3600

5 1606 121374 1.5% 3600

6 1920 102360 1.7% 3600

7 2142 96483 5.0% 3600

8 2180 96484 13.0% 3600

All test problems have 50 nodes, 130 arcs, 585 commodities.

Run times on an IBM RS6000/590.
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Conclusions I

• Choose your formulation carefully

– Trade-off memory requirements and solution time

– Sub-network formulation can be effective when 

low level of congestion in the network

• Problem size often mandates use of combined 

column and row generation
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Conclusions II

• Solution time is affected dramatically by

– The complexity of the pricing problem

– Exploitation of problem structure, pre-

processing, LP solver selection, etc.

• Branching strategy should preserve the 

structure of the pricing problem

– Branch on “small” decisions, not the variables in 

the column generation formulation


