1.206J/16.77J/ESD.215J Airline Schedule Planning

> Cynthia Barnhart Spring 2003

1.206J/16.77J/ESD.215J Airline Schedule Planning: Multi-commodity Flows

<u>Outline</u>

- Applications
- Problem definition
- Formulations
- Solutions
- Computational results
- Integer multi-commodity network flow problems
- Integer multi-commodity network flow solutions
 - Branch-and-price: combination of branch-and-bound and column generation
- Results

Application I

- Package flow problem (express package delivery operation)
 - Shipments have specific origins and destinations and must be routed over a transportation network
 - Each set of packages with a common origindestination pair is called a commodity
 - Time windows (availability and delivery time) associated with packages
 - The objective might be to minimize total costs, find a feasible flow, ...

Application II

- Passenger mix problem
 - Given a fixed schedule of flights, a fixed fleet assignment and a set of customer demands for air travel service on this fleeted schedule, the airline's objective is to maximize revenues by accommodating as many high fare passengers as possible -For some flights, demand exceeds seat supply and passengers must be *spilled* to other itineraries of either the same or another airline

Application III

- Message routing problem

 In a telecommunications or computer network, requirements exist for transmission lines and message requests, or commodities.
 - The problem is to route the messages from their origins to their respective destinations at minimum cost

MCF Networks

- Set of nodes
 - Each node associated with the supply of or demand for commodities
- Set of arcs
 - Cost per unit commodity flow

 Capacity limiting the *total* flow of all commodities and/ or the flow of individual commodities

MCF Commodity Definitions

- A commodity may originate at a subset of nodes in the network and be destined for another subset of nodes
- A commodity may originate at a single node and be destined for a subset of the nodes
- A commodity may originate at a single node and be destined for a single node

MCF Objectives

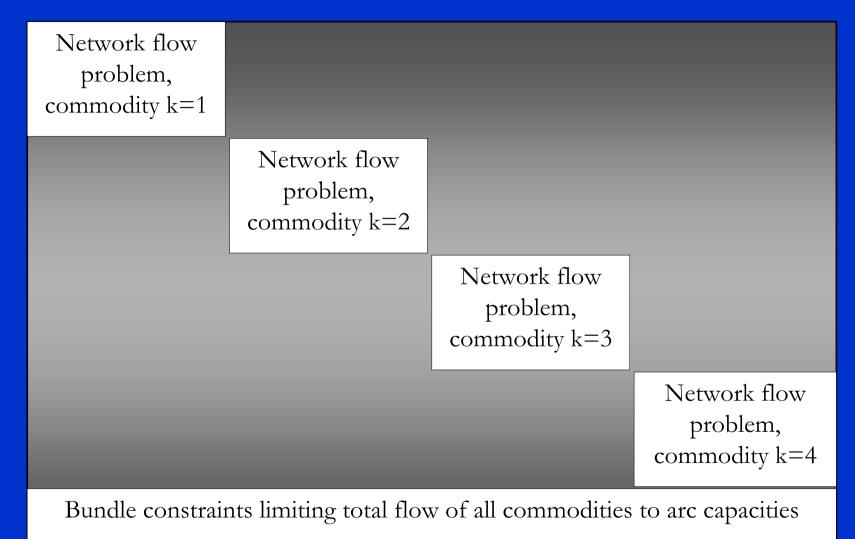
- Flow the commodities through the networks from their respective origins to their respective destinations at minimum cost

 Expressed as distance, money, time, etc.
- Ahuja, Magnanti and Orlin (1993)-- survey of multi-commodity flow models and solution procedures

MCF Problem Formulations --Linear Programs

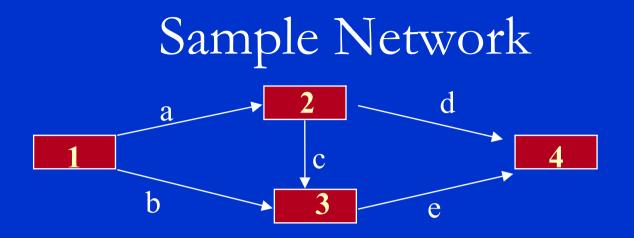
- Network flow problems
 - Capacity constraints limit flow of individual commodities
 - Conservation of flow constraints ensure flow balance for individual commodities
 - Flow non-negativity constraints
- With side constraints
 - Bundle constraints restrict total flow of ALL commodities on an arc

MCF Constraint Matrix



Alternative Formulations for O-D Commodity Case

- Node-Arc Formulation
 - Decision variables: flow of commodity k on each arc ij
- Path Formulation
 - Decision variables: flow of commodity k on each path for k
- "Tree" or "Sub-network" Formulation
 - Define: super commodity: set of all (O-D) commodities with the same origin *o* (or destination *d*)
 - Decision variables: quantity of the super commodity k' assigned to each "tree" or "sub-network" for k'
- Formulations are equivalent



<u>Arcs</u>						<u>Commodities</u>					
<u>i</u>	į	<u>cost</u>	<u>capy</u>			<u>#</u>	<u>O</u>	<u>d</u>	quan		
1	2	1	20			1	1	3	5		
1	3	2	10			2	1	4	15		
2	3	3	20			3	2	4	5		
2	4	4	10			4	3	4	10		
3	4	5	40								

Barnhart 1.206J/16.77J/ESD.215J

Notation

Parameters

- A: set of all network arcs
- K: set of all commodities
- N: set of all network nodes
- O(k) [D(k)]: origin [destination] node for commodity k
- c_{ij}^{k} : per unit cost of commodity k on arc ij
- u_{ij} : total capacity on arc ij (assume u_{ij}^k is unlimited for each k and each ij)
- d_k : total quantity of commodity k

Decision Variables

 x_{ij}^k : number of units of commodity k assigned to arc ij

Node-Arc Formulation

Minimize $\sum \sum c_{ij}^k x_{ij}^k$

subject to

$\sum_{j} x_{ij}^{k} - \sum_{j} x_{j}^{k}$	$d_{ji}^{k} = d_{k} \text{if} i \in O(k)$
	$=-d_k$ if $i \in D(k)$
	= 0 otherwise
$\sum_{k} x_{ij}^{k} \leq u_{ij}$	$\forall (i,j) \in A$

: Bundle constraints

	x_{ii}^k	≥ 0	\forall	(i, j	$) \in \mathcal{L}$	A, k	$\in K$	~				: Nonnegativity constraints			: No	S					
	k I					k 2					k 3					k 4					
	а	b	с	d	е	a	b	с	d	е	а	b	с	d	e	a	b	с	d	е	RHS
1	1																				$= d_1$
2	- 1	-1	1	1	1																= 0 = -d
4		- 1	- 1	- 1	-1																$= 0^{-1}$
1						1	1														= d ₂
2						- 1															= 0
3							- 1	- 1	1	-1											= 0 = -d ₂
									- 1	- 1	1	1									$= \frac{1}{2}$
2											-1		1	1							$= d_3$
3												- 1	- 1								= 0
4														- 1	- 1						$= -d_{3}$
$\frac{1}{2}$																1	1	1	1		= 0 = 0
23																- 1	- 1	-1	1	1	= 0 $= d_{4}$
4																			- 1	-1	$= -d_4$
а	1					1					1					1					≤ u _a
b																					\leq u _b
c			1					1					1					1			\leq u _c
d					1				1	1				1	1					1	≤ u _d
e		0 1	0.1			0 2	0 ²	0 2	0 ²	2	0.3	0 3	0 3	0 3	- 1	0.4	a 4	0.4	0 4	- 1	≤ u _e
	$\begin{array}{c} c_{a}^{1} \\ x_{a}^{1} \end{array}$	$\begin{array}{c} c_{b} \\ x_{b} \end{array}$	$\begin{array}{c} c_{c} \\ x_{c} \end{array}$	$\begin{array}{c} c_{d} \\ x_{d} \end{array}$	$\begin{array}{c} c_{e}^{-1} \\ x_{e}^{-1} \end{array}$	$\begin{array}{c} c_a^2 \\ x_a^2 \end{array}$	$\frac{c_b^2}{x_b^2}$	$\frac{c_{c}^{2}}{x_{c}^{2}}$	$\frac{c_d^2}{x_d^2}$	$\frac{c_e^2}{x_e^2}$	$\begin{array}{c} c_a{}^3\\ x_a{}^3\end{array}$	$\frac{c_b}{x_b^3}$	$\frac{c_{c}^{3}}{x_{c}^{3}}$	c_d^3 x_d^3	c_e^3 x_e^3	$\begin{array}{c} c_{a}^{4} \\ x_{a}^{4} \end{array}$	$\begin{array}{c} c_{b}^{4} \\ x_{b}^{4} \end{array}$	c_{c}^{4} x_{c}^{4}	c_d^4 x_d^4	c_e^4 x_e^4	

12/10/2003

Additional Notation

Parameters

- P^k: set of all paths for commodity k, for all k
- \mathbf{c}_{p} : per unit cost of commodity k on path p = $\sum_{ij \in p} \mathbf{c}_{ij}^{k}$
- δ_{ij}^{p} := 1 if path p contains arc ij; and = 0 otherwise

Decision Variables

 f_p: fraction of total quantity of commodity k assigned to path p

O/D Based Path Formulation

Minimize

 $\sum_{k} \sum_{p \in P^{k}} d_{k} C_{p} f_{p}$

subject to

$\sum_{k} \sum_{p \in P^{k}} d_{k} f_{p} \delta_{ij}^{p} \leq u_{ij}$	$\forall (i, j) \in A$: Bundle constraints
$\sum_{p \in P^k} f_p = 1 \qquad \forall k \in K$: Flow balance constraints

		$f_n \geq 0$	$\forall p$	$\in P^*, k$	$\in K$	Non-neg. constraints				
	Path									
	k=1		k=2			k=3		k=4	RHS	Dual
а	d ₁	0	d ₂	d ₂	0	0	0	0	<= u _a	$-\pi_a$
b	0	d ₁	0	0	d ₂	0	0	0	<= u _b	$-\pi_{b}$
С	d ₁	0	d ₂	0	0	d ₃	0	0	<= u _c	$-\pi_{c}$
d	0	0	0	d ₂	0	0	d ₃	0	<= u _d	$-\pi_{d}$
е	0	0	d ₂	0	d ₂	d ₃	0	d ₄	<= u _e	$-\pi_{e}$
k=1	1	1							= 1	σ^1
k=2			1	1	1				= 1	σ^2
k=3						1	1		= 1	σ^3
k=4								1	= 1	σ^4
Cost.	$C_1 d_1$	$C_2 d_1$	$C_3 d_2$	$C_4 d_2$	$C_5 d_2$	$C_6 d_3$	$C_7 d_3$	$C_8 d_3$		
Variable	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8		
1	2/10/2003			Barn	hart 1.206J/16.7	7J/ESD.215J				16

Additional Notation

<u>Parameters</u>

- S: set of source nodes n∈N for all commodities
- Q^s: the set of all subnetworks originating at s
- TC_q^s: total cost of subnetwork q originating at s
- ζ_p^q : = 1 if path p is contained in sub-network q; and = 0 otherwise

Decision Variables

 R_q^s: fraction of total quantity of the super commodity originating at s assigned to subnetwork q

Sub-network Formulation

Minimize $\sum_{s \in S} \sum_{q \in Q^s} \left(\sum_{k \in q} \sum_{p \in P^k} C_p \zeta_p^q d_k \right) R_q^s$

subject to

$$\sum_{s} \sum_{q \in Q^{s}} \left(\sum_{k \in s} \sum_{p \in P^{k}} d_{k} \delta_{ij}^{p} \right) R_{q}^{s} \zeta_{p}^{q} \leq u_{ij} \forall (i, j) \in A$$

$$\sum_{q \in Q^{s}} R^{s}_{q} = 1 \qquad \forall s \in S$$

$$R^{s} \ge 0 \qquad \forall q \in Q^{s} \quad s \in S$$

: Capacity Limits on Each Arc

: Mass Balance Requirements

: Nonnegative Path Flow Variables

	Sub-	network									
	o=1						o=2		o=3	RHS	Dual
а	$d_1 + d_2$	$d_1 + d_2$	d ₁	d ₂	d ₂	0	0	0	0	<= u _a	π _a
b	0	0	d ₂	d ₁	d ₁	$d_1 + d_2$	0	0	0	<= u _b	π_{b}
С	d ₁	$d_1 + d_2$	d ₁	0	d ₂	0	d ₃	0	0	<= u _c	π_{c}
d	d ₂	0	0	d ₂	0	0	0	d ₃	0	<= u _d	π_{d}
е	0	d ₂	d ₂	0	d ₂	d ₂	d ₃	0	d ₄	<= u _e	$\pi_{ m e}$
o=1	1	1	1	1	1	1				= 1	σ^1
o=2							1	1		= 1	σ^2
o=3									1	= 1	σ^3
Cost.	TC_1^1	TC_2^1	TC_3^1	TC_4^1	TC_5^1	TC_6^1	TC_1^2	TC_2^2	TC_1^3		
Variable	R_1^1	R_2^1	R_3^1	R_4^1	\mathbf{R}_{5}^{1}	\mathbf{R}_{6}^{1}	R_{1}^{2}	R_2^2	R_{1}^{3}		

12/10/2003

Linear MCF Problem Solution

- Obvious Solution
 - LP Solver
- Difficulty
 - Problem Size: (|N|=|Nodes|, |C|=|Commodities|, |A|=|Arcs|)
 - Node-arc formulation:
 - Constraints: $|N|^*|C| + |A|$
 - Variables: |A|*|C|
 - Path formulation:
 - Constraints: |A| + |C|
 - Variables: |Paths for ALL commodities|
 - Sub-network formulation:
 - Constraints: |A|+|Origins|
 - Variables: |Combinations of Paths by Origin|

General MCF Solution Strategy

• Try to Decompose a Hard Problem Into a Set of Easy Problems

MCF Solution Procedures I

• Partitioning Methods

 Exploit Network Structure to Speed Up Simplex Matrix Computations

- Resource-Directive Decomposition
 - Repeat until Optimal:
 - Allocate Arc Capacity Among Commodities
 - Find Optimal Flows Given Allocation

MCF Solution Procedures II

- Price-Directive Decomposition
 - Repeat until Optimal:
 - Modify Flow Cost on Arc
 - Ignore Bundle Constraints, Find Optimal Flows

Revisiting the Path Formulation

MINIMIZE $\Sigma_{k \in K} \Sigma_{p \in P^k} d_k c_p f_p$

subject to: $\Sigma_{p \in P^k} \Sigma_{k \in K} d_k f_p \delta_{ij}^p \le u_{ij} \quad \forall ij \in A$

 $\Sigma_{p \in P(k)} f_p = 1 \quad \forall k \in K$

 $f_{p} \geq 0 \quad \forall p \in P^{k}, \quad \forall k \in K$

By-products of the Simplex Algorithm: Dual Variable Values <u>Duals</u>

 $-\pi_{ij}$: the dual variable associated with the bundle constraint for arc ij (π is non-negative) σ^{k} : the dual variable associated with the commodity constraints

Economic Interpretation

 π_{ij} : the value of an additional unit of capacity on arc ij σ^{k}/d_{k} : the minimal cost to send an additional unit of commodity k through the network

Modified Costs

<u>Definition</u>: Modified cost for arc *ij and* commodity $k = c_{ij}^{k} + \pi_{ij}$

<u>Definition</u>: Modified cost for path *p* and commodity $k = \sum_{ij \in A} (c_{ij}^{\ k} + \pi_{ij}) \delta_{ij}^{\ p}$

Optimality Conditions for the Path Formulation

 f_{p}^{*} and π_{ij}^{*} , σ^{*k} are optimal for all k and all ij iff: Primal feasibility is satisfied

> 1. $\Sigma_{p \in P^{k}} \Sigma_{k \in K} d_{k} f^{*}_{p} \delta_{ij}^{p} \leq u_{ij} \quad \forall ij \in A$ 2. $\Sigma_{p \in P(k)} f^{*}_{p} = 1 \quad \forall k \in K$ 3. $f^{*}_{p} \geq 0 \quad \forall p \in P^{k}, \quad \forall k \in K$

Complementary slackness is satisfied

1. $\pi^*_{ij}(\sum_{p \in P^k} \sum_{k \in K} d_k f^*_p \delta_{ij}^p \cdot u_{ij}) = 0, \quad \forall ij \in A$ 2. $\sigma^{*k}(\sum_{p \in P^k} f^*_p - 1) = 0, \quad \forall k \in K$

Dual feasibility is satisfied (reduced cost is non-negative for a minimization problem)

$$\begin{array}{ll} & (\mathrm{d}_{k} c_{p} + \Sigma_{ij \in A} \, \mathrm{d}_{k} \, \pi_{ij} \, \delta_{ij}^{p}) \cdot \sigma^{k} = \mathrm{d}_{k} \left(\Sigma_{ij \in A} \, \left(c_{ij}^{k} + \pi_{ij} \right) \, \delta_{ij}^{p} \cdot \sigma^{k} \, / \, \mathrm{d}_{k} \right) \geq 0, \ \forall p \in P^{k}, \ \forall k \in K \end{array}$$

Multi-commodity Flow Optimality Conditions

• The price for an additional unit of capacity is 0 unless capacity is fully utilized

1. $\pi_{ij}^*(\Sigma_{p \in P^k} \Sigma_{k \in K} d_k f_p^* \delta_{ij}^p - u_{ij}) = 0, \quad \forall ij \in A$

- A path *p* for commodity *k* is utilized only if its "modified cost" (that is, $\sum_{ij \in A} (c_{ij}^{k} + \pi^*_{ij} \delta_{ij}^{p})$) is minimal, for all paths $p \in P^k$
 - 1. Reduced Costs all non-negative:

$$\begin{split} c_{p}^{'} &= d_{k} \left(\Sigma_{ij \in A} \left(c_{ij}^{k} + \pi_{ij}^{*} \right) \delta_{ij}^{p} - \sigma^{*k} / d_{k} \right) \geq 0, \\ & \forall p \in P^{k}, \ \forall k \in K \end{split}$$

2. $f_{p}^{*}(\Sigma_{ij\in A}(c_{ij}^{k} + \pi_{ij}^{*})\delta_{ij}^{p} - \sigma^{*k}/d_{k}) = 0,$

$$\forall p \in P^k, \ \forall k \in K$$

Column Generation- A Price Directive Decomposition

Millions/Billions of Variables

Restricted Master Problem (RMP)

Start

Added

Never Considered

12/10/2003

Constraints

RMP and Optimality Conditions Consider f_{p}^{*} and π_{ij}^{*} , σ^{*k} optimal for RMP, then Primal feasibility is satisfied

> 1. $\Sigma_{p \in P^{k}} \Sigma_{k \in K} d_{k} f^{*}_{p} \delta_{ij}^{p} \leq u_{ij} \quad \forall ij \in A$ 2. $\Sigma_{p \in P(k)} f^{*}_{p} = 1 \quad \forall k \in K$ 3. $f^{*}_{p} \geq 0 \quad \forall p \in P^{k}, \quad \forall k \in K$

Complementary slackness is satisfied

1.
$$\pi^*_{ij}(\Sigma_{p \in P^k} \Sigma_{k \in K} d_k f^*_p \delta_{ij}^p - u_{ij}) = 0, \quad \forall ij \in A$$

2. $\sigma^{*k}(\Sigma_{p \in P^k} f^*_p - 1) = 0, \quad \forall k \in K$

Dual feasibility is guaranteed (reduced cost is nonnegative) ONLY for a path p included in RMP

1.
$$(d_k c_p + \Sigma_{ij \in A} d_k \pi_{ij} \delta_{ij}^p) - \sigma^k = d_k (\Sigma_{ij \in A} (c_{ij}^k + \pi_{ij}) \delta_{ij}^p - \sigma^k / d_k) \ge 0, \forall p \in P^k, \forall k \in K$$

LP Solution: Column Generation

- Step 1: Solve *Restricted Master Problem* (RMP) with subset of all variables (columns)
- Step 2: Solve *Pricing Problem* to determine if any variables when added to the RMP can improve the objective function value (that is, if any variables have negative reduced cost)
- Step 3: If variables are identified in Step 2, add them to the RMP and return to Step 1; otherwise STOP

Pricing Problem

• Given π (non-negative) and σ^k (unrestricted), the optimal duals for the current restricted master problem, the pricing problem, for each $p \in P^k$, $k \in K$ is

 $\min_{p \in P^{k}} \left(d_{k} \left(\sum_{ij \in A} \left(c_{ij}^{k} + \pi_{ij} \right) \delta_{ij}^{p} - \sigma^{k} / d_{k} \right)$ Or, equivalently:

 $\begin{array}{l} \min_{p \in P^k} \Sigma_{ij \in A} \left(c_{ij}^{\ k} + \pi_{ij} \right) \overline{\delta_{ij}^{\ p}} \\ & \searrow A \text{ shortest path problem for commodity } k \text{ (with modified arc costs)} \end{array}$

Example-Iteration 1

	Path									
	k=1		k=2			k=3		k=4	RHS	Dual
а	5	0	15	15	0	0	0	0	<= 20	π _a = 0
b	0	5	0		15		0	0	<= 10	$\pi_{b}=0$
С	5	0	15		0		0	0	<= 20	$\pi_{\rm c}$ = 0
d	0	0	0		0		5	0	<= 10	$\pi_{d}=0$
е	0	0	15		15		0	10	<= 40	π _e = 0
k=1	1	1							= 1	σ ¹ = 10
k=2			1		1				= 1	σ ² = 135
k=3							1		= 1	σ ³ = 20
k=4								1	= 1	σ ⁴ = 50
Cost.	20	10	135	75	105	40	20	50		
Variable	f_1	<i>f</i> ₂ = 1	f ₃ = 1	f_4	f_5	f_6	f ₇ = 1	f ₈ =1		

Example- Iteration 2

	Path									
	k=1		k=2			k=3		k=4	RHS	Dual
а	5	0	15	15	0	0	0	0	<= 20	π _a = 0
b	0	5	0	0	15	0	0	0	<= 10	π _b = 2
С	5	0	15	0	0	5	0	0	<= 20	π _c = 0
d	0	0	0	15	0	0	5	0	<= 10	$\pi_d = 4$
е	0	0	15	0	15	5	0	10	<= 40	_{πe} = 0
k=1	1	1							= 1	σ ¹ = 20
k=2			1	1	1				= 1	σ ² = 135
k=3						1	1		= 1	σ ³ = 40
k=4								1	= 1	
Cost.	20	10	135	75	105	40	20	50		
Variable	f_1	f ₂ =1	<i>f</i> ₃ =1/3	<i>f</i> ₄ = 1/3	<i>f</i> ₅ =1/3	f_6	f ₇ = 1	f ₈ =1		

MCF Optimality Conditions

• For each $p \in P^k$, for each k, the reduced cost c'_p :

$$- c'_{p} = (d_{k}c_{p} + \Sigma_{ij} \in \mathcal{A} d_{k}\pi_{ij}\delta_{ij}^{p}) - \sigma^{k} = \Sigma_{ij} (d_{k}c_{ij}^{k} + d_{k}\pi_{ij})\delta_{ij}^{p} - \sigma^{k} - \Sigma_{ij} (c_{ij}^{k} + \pi_{ij})\delta_{ij}^{p} - \sigma^{k} / d_{k} \ge 0$$

• where π , σ are the optimal duals for the current restricted master problem

$$- c'_{p} = 0, \text{ for each utilized path } p \text{ implies}$$
$$\Sigma_{ij} (d_{k}c_{ij}^{k} + d_{k}\pi_{ij}) \delta_{ij}^{p} = \sigma^{k}$$

or equivalently,

 $\sum_{ij} \left(c_{ij}^{\ k} + \pi_{ij} \right) \, \delta_{ij}^{\ p} = \sigma^k / d_k$

- So if, $\min_{p \in P(k)} c'_p = \sum_{ij} (c_{ij}^k + \pi_{ij}) \delta_{ij}^{p*} \sigma^k / d_k \ge 0$, the current solution to the restricted master problem is optimal for the original problem
- If $\min_{p \in P(k)} c'_p = \sum_{ij} (c_{ij}^k + \pi_{ij}) \delta_{ij}^{p*} \sigma^k / d_k < 0$, add p^* to restricted master problem

Data Set

• Data Set

Nodes		807
Links		1,363
	capacitated	292
	uncapacitated	1,071
O/D		17,539
	# Origin	136

• Constraint Matrix Size

			Improvement
	row	column	new_row
Node_Arc	14,155,336	23,905,657	-
Path	18,902	-	17,832
Sub-network	1,499	-	428

12/10/2003

Computational Results

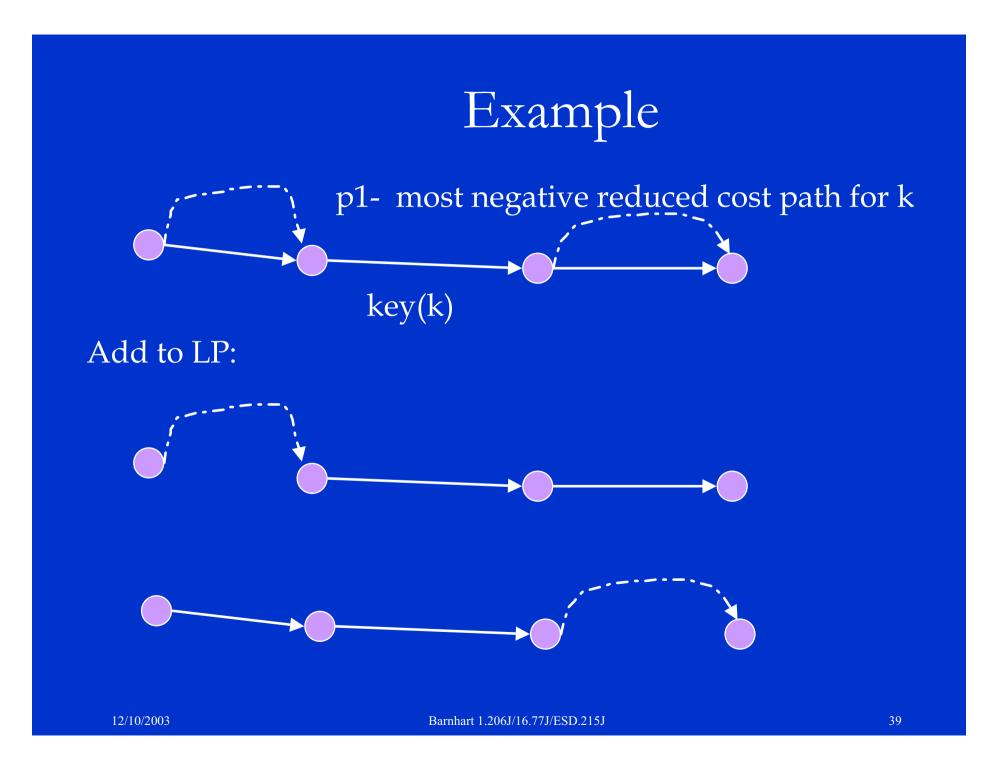
- Number of Nodes: 807
- Number of Links: 1,363
- Number of Commodities: 17,539
- Computational Result (IBM RS6000, Model 370)
 - Path Model: 44 minutes
 - Sub-network Model: < 1 minute</p>

LP Computational Experiment

 Test effect of adding most negative reduced cost column for each commodity vs. adding several negative reduced cost columns for each commodity

Generating Several Columns Per Commodity

- Select any basic column (f_p has reduced cost
 = 0) for some path p and commodity k, call it the key(k)
- Add *all* simple paths representing symmetric difference between most negative reduced cost path and *key(k)*



LP Solution:						
One Path per Commodity						
problem	iterations	columns	time (sec)			
1	3747	9125	240			
2	3572	9414	246			
3	3772	10119	268			

1	3'/4'/	9125	240
2	3572	9414	246
3	3772	10119	268
4	3663	10101	289
5	10128	10624	325
6	8509	27041	1289
7	9625	29339	1332
8	7135	22407	842
9	9500	30132	1369
10	7498	23571	833

301 nodes, 497 arcs, 1320 commodities. Times are on an IBM RS6000/590.

LP Solution:

All Simple Paths for Each Commodity

problem	iterations	columns	time (sec)
1	2455	8855	162
2	2690	10519	199
3	2694	10617	224
4	2511	10496	218
5	2706	11179	234
6	4391	25183	662
7	4208	23880	607
8	3237	17587	398
9	4191	20472	501
10	3633	21926	420

301 nodes, 497 arcs, 1320 commodities. Times are on an IBM RS6000/590.

Integer Multi-Commodity Network Flows

- Consider the modified multi-commodity network flow problem:
 - Added *integrality* restriction that each commodity must be assigned to exactly one path

• $f_p \in (0.1), \forall p \in P^k$

-Solution procedure: branch-andbound, specialized to handle largescale problems Integer Multicommodity Flows: Problem Formulation

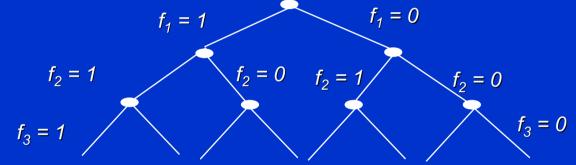
MINIMIZE $\sum_{k \in K} \sum_{p \in P^k} d_k c_p f_p$

subject to: $\sum_{p \in P^k} \sum_{k \in K} d_k f_p \delta_{ij}^p \leq u_{ij} \quad \forall ij \in A$

 $\Sigma_{p \in P(k)} f_p = 1 \quad \forall k \in K$

 $f_{p} \in (0,1) \ \forall p \in P^{k}, \ \forall k \in K$

Branch-and-Bound: A Solution Approach for Binary Integer Programs



All possible solutions at leaf nodes of tree (2ⁿ solutions, where n is the number of variables) Branch-and-Bound: A Solution Approach for Binary Integer Programs

- Branch-and-Bound is a *smart* enumeration strategy:
 - With branching, all possible solutions (e.g., 2^{number} of path for all commodities) are enumerated
 - With bounding, only a (usually) small subset of possible solutions are evaluated before a provably optimal solution is found

Bounding: The Linear Programming (LP) Relaxation

- Consider the linear path-based MCF problem formulation
 - Objective is to minimize
- The LP relaxation replaces

$$f_p \in 0,1$$

with

$$1 \ge f_p \ge 0$$

• Let z_{LP}^{*} represent the optimal LP solution and let z_{IP}^{*} represent the optimal IP solution

$$\chi_{LP}^{*} \leq \chi_{IP}^{*}$$

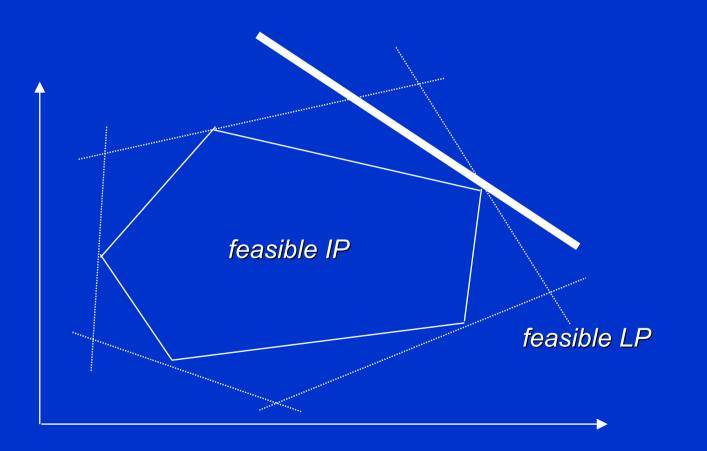
LP's provide a bound on the lowest possible value of the optimal integer solution

Barnhart 1.206J/16.77J/ESD.215J

Branching

- Consider an IP with binary restrictions on all variables, denoted *P*(*1*)
- Let LP(1) denote the linear programming relaxation of P(1) and let x*(1) denote the optimal solution to LP(1)
- If there is no variable with fractional value in $x^*(1)$, $x^*(1)$ solves (is optimal for) P(1)
- If there is at least one variable with fractional value in x*(1), call it x_l*(1), then any optimal solution for P(1) has x_l*(1)=0 or x_l*(1)=1
 - Left branch: $x_l^*(1)=0$
 - Right branch: $x_l^*(1)=1$

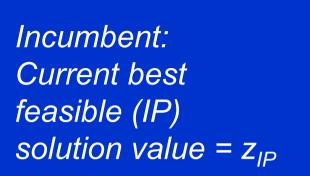
A Pictorial View

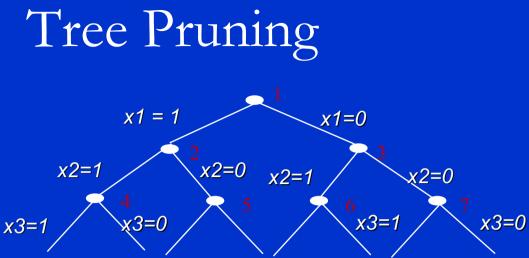


Relationship between Bound and Tree Depth

- Let x*(1) be the optimal solution to LP(1) with at least one fractional variable x_l*(1)
- Let the optimal solution value for LP(1) be denoted $\chi^*(1)$
- Let $LP(2) = LP(1) + [x_l^*(1) = 0 \text{ or } x_l^*(1) = 1]$
- Let the optimal solution value for LP(2) be denoted $\chi^*(2)$
- Then

 $z^*(1) \leq z^*(2)$





If $z^*(LP(2)) \ge z_{IP}$, PRUNE (FATHOM) tree at node 2 (solutions on the LHS of tree cannot be optimal. 1/2 of the solutions (nodes) do not need to be evaluated!)

If $z^*(LP(2))$ is integral, PRUNE tree at node 2 (solutions in sub-tree at node 2 cannot be better.)

If LP(2) is infeasible, PRUNE tree at node 2 (solutions in sub-tree at node 2 cannot be feasible.)

Branch-and-Bound Algorithm

Beginning with rootnode (minimization):

- Bound:
 - Solve the current LP with this and all restrictions along the (back) path to the rootnode enforced
- Prune:
 - If optimal LP value is greater than or equal to the incumbent solution: Prune
 - If LP is infeasible: Prune
 - If LP is integral: Prune and update incumbent solution
- Branch:
 - Set some variable to an integer value
- Repeat until all nodes pruned 12/10/2003 Barnhart 1.206J/16.77J/ESD.215J

Branch-and-Price Solution Approach

- Branch-and-bound tailored to solve largescale integer programs
- Bounding
 - Solve LP using column generation at each node of the branch-and-bound tree
- Branching
 - New columns might have to be generated to find an optimal solution to the constrained problem
 - Want to design the branching decision so that the algorithm for the pricing is unchanged as the branch-and-bound tree is processed

Example Revisited

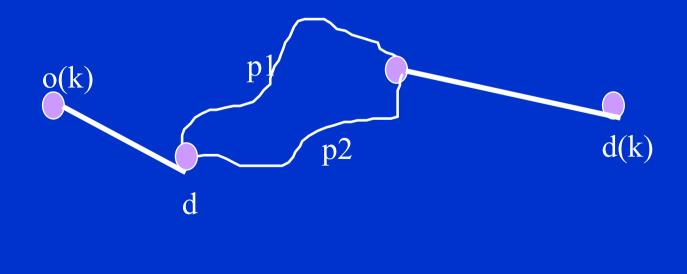
	Path									
	k=1		k=2			k=3		k=4	RHS	Dual
а	5	0	15	15	0	0	0	0	<= 20	π _a = 0
b	0	5	0	0	15		0	0	<= 10	π _b = 2
С	5	0	15	0	0		0	0	<= 20	$\pi_{\rm c}$ = 0
d	0	0	0	15	0		5	0	<= 10	$\pi_d = 4$
е	0	0	15	0	15		0	10	<= 40	π _e = 0
k=1	1	1							= 1	σ ¹ = 20
k=2			1	1	1				= 1	σ²= 135
k=3							1		= 1	σ ³ = 40
k=4								1	= 1	σ ⁴ = 50
Cost.	20	10	135	75	105	40	20	50		
Variable	f_1	f ₂ =1	<i>f</i> ₃ =1/3	<i>f</i> ₄ = 1/3	<i>f</i> ₅ =1/3	f_6	f ₇ = 1	f ₈ =1		

Branch-and-Price: Branching and Compatibility with the Pricing Problem

- Branching decision for commodity $k, f_p = 1$:
 - No pricing problem solution is necessary
 - All other variables for k are removed from the model
- Branching decision for commodity $k, f_p = 0$:
 - The solution to the pricing problem (a shortest path problem) CANNOT generate path *p* as the shortest path, must instead find the *next* shortest path
 - In general, at nodes of depth / in the branch-andbound tree, the pricing problem must potentially generate the kth shortest path

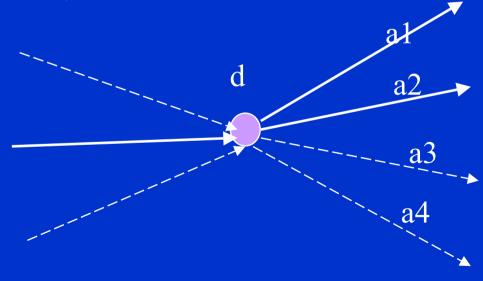
An Alternative Branching Idea: Branch on *Small* Decisions

- Consider commodity k whose flow is split
- Assume *k* takes 2 paths, *p1* and *p2*
- Let *d* be the divergence node



Divergence Node

- Let *a1* be the arc out of *d* on *p1* and *a2* be the arc out of *d* on *p2*
- $A(d) = \{a1, a2, a3, a4\}, A(d,a1) = \{a1,a3\}, A(d, a2)$ = $\{a2, a4\}$



Branching Rule

• Create two branches, one where

• And the other with

12/10/2003

Barnhart 1.206J/16.77J/ESD.215J

Branch-and-Bound Results: Conventional Branching Rule

- Eight telecommunications test problems
 50 nodes, 130 arcs, 585 commodities
- Computational experiment on an IBM RS6000/590
- For each of the eight test problems, run time of 3600 seconds
 - No feasible solution was found

Branch-and-Bound Results: Our New Branching Rule

problem	columns	nodes	gap	time (sec)
1	1119	139869	0.14%	3600
2	1182	138979	0.5%	3600
3	1370	126955	1.5%	3600
4	1457	128489	2.7%	3600
5	1606	121374	1.5%	3600
6	1920	102360	1.7%	3600
7	2142	96483	5.0%	3600
8	2180	96484	13.0%	3600

All test problems have 50 nodes, 130 arcs, 585 commodities. Run times on an IBM RS6000/590.

Conclusions I

- Choose your formulation carefully
 - Trade-off memory requirements and solution time
 - Sub-network formulation can be effective when low level of congestion in the network
- Problem size often mandates use of combined column and row generation

Conclusions II

- Solution time is affected dramatically by

 The complexity of the pricing problem
 - Exploitation of problem structure, preprocessing, LP solver selection, etc.
- Branching strategy should preserve the structure of the pricing problem
 - Branch on "small" decisions, not the variables in the column generation formulation