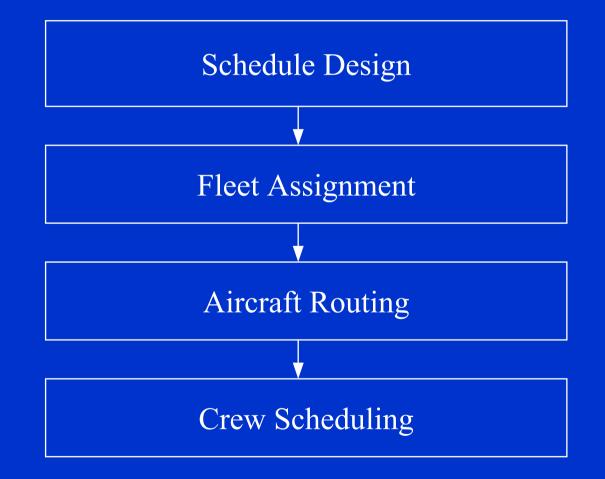
1.206J/16.77J/ESD.215J Airline Schedule Planning

> Cynthia Barnhart Spring 2003

1.206J/16.77J/ESD.215J The Crew Scheduling Problem


• Outline

- Problem Definition
- Sequential Solution Approach
- Crew Pairing Optimization Model
- -Branch-and-Price Solution
 - Branching strategies

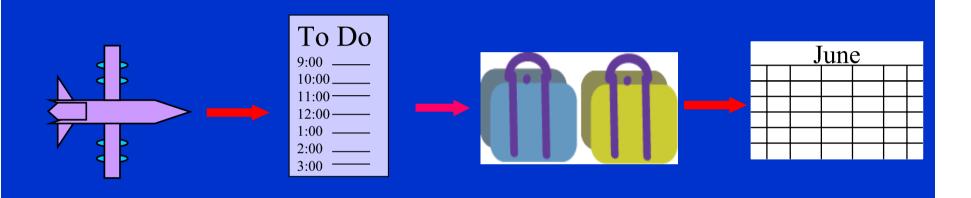
Why Crew Scheduling?

- Second largest operating expense (after fuel)
- OR success story
- Complex problems with many remaining opportunities
- A case study for techniques to solve large IPs

Airline Schedule Planning

12/11/2003

The Crew Scheduling Problem


- Assign crews to cover all flights for a given fleet type
- Minimize cost
 - Time paid for flying
 - "Penalty" pay
- Side constraints
 - Balance
 - Robustness

Network Flow Problem?

12/11/2003

Building Blocks

12/11/2003

Barnhart 1.206J/16.77J/ESD.215J

Duty Periods

Definition:

A duty period is a day-long sequence of *consecutive flights* that can be assigned to a *single crew*, to be followed by a *period of rest*

Duty Rules

Rules:

- Flights are sequential in space/time
- Maximum flying time
- Minimum idle/sit/connect time
- Maximum idle/sit/connect time
- Maximum duty time

Duty Cost Function

- Maximum of:
 - Total flying time
 - $-f_d$ * total duty time
 - Minimum guaranteed duty pay
- Primarily compensates for flying time, but also compensates for "undesirable" schedules

Definition:

A sequence of *duty periods*, interspersed with *periods of rest*, that begins and ends at a *crew domicile*

Pairing Rules

Rules:

- First duty starts/last duty ends at domicile
- Duties are sequential in space/time
- Minimum rest between duties
- Maximum layover time
- Maximum number of days away from base
- 8-in-24 rule

Pairing Cost Function

- Maximum of:
 - Sum of duty costs
 - $-f_{p}$ * total time away from base (TAFB)
 - Minimum guaranteed pairing pay

Schedules

Rules:

- Minimum rest between pairings
- Maximum monthly flying time
- Maximum time on duty
- Minimum total number of days off

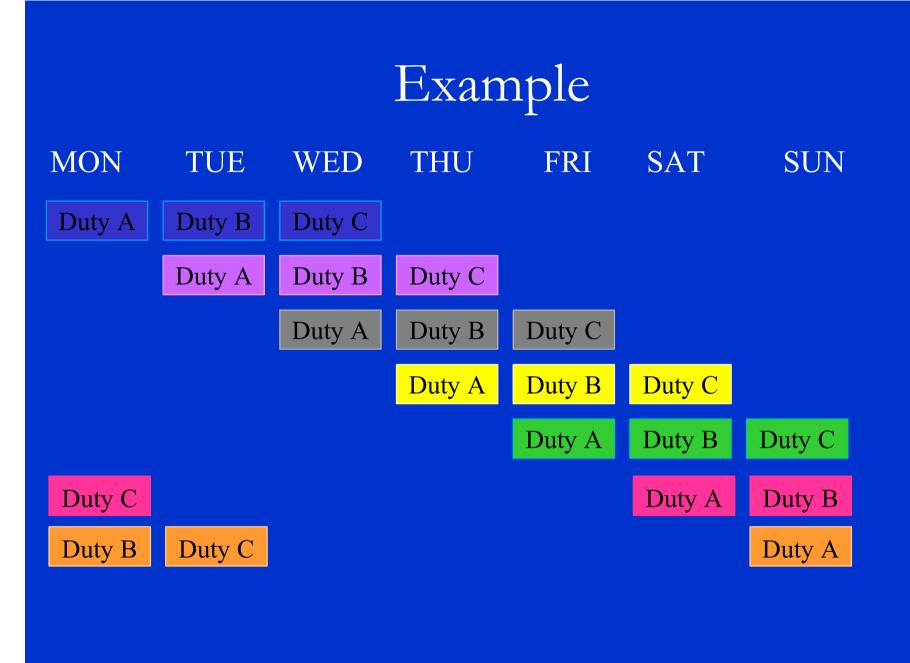
Two key differences:

- Cost function focuses on crew preferences
- Schedules individuals rather than complete crews

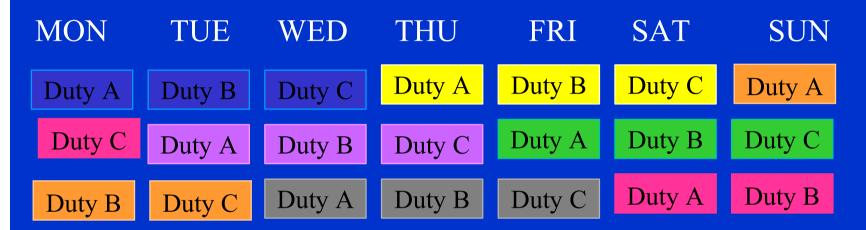
Crew Scheduling Problems

Domestic	International
Crew Scheduling Problem Crew Pairing Daily Weekly Exception	Cockpit Crews Crew Scheduling Problem Crew Pairing Daily Weekly Exception
Crew Scheduling Problem Crew Pairing Daily Weekly Exception	Cabin Crews Crew Scheduling Problem Daily Weekly Exception
Recovery Problem	

12/11/2003


Barnhart 1.206J/16.77J/ESD.215J

Pairing Problems

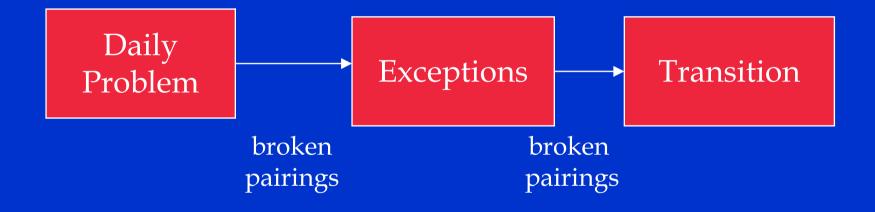

- Select a minimum cost set of pairings such that every flight is included in exactly one pairing
- Crew Pairing Decomposition
 - Daily
 - Weekly
 - Exceptions
 - Transitions

- All flights operating four or more times per week
- Chosen pairings will be repeated each day
- Multi-day pairings will be flown by multiple crews
- Flights cannot be repeated in a pairing

Example, cont.

Weekly

- Cover all flights scheduled in a week-long period
- Fleet assignment on a particular flight leg can vary by day of week
- Identify flights by day-of-week as well as flight number, location, time


Exceptions

- Cover all flights in "broken pairings"
- Cover all flights that are scheduled at most three times/week
- Identify flights by day-of-week as well as flight number, location, time
- Generate "weekly" pairings

Transition

- Cover flights in pairings that cross the end of the month
- Identify flights by date as well as flight number, location, time, day-of-week
- Generate pairings connecting two different flight schedules

Crew Planning

Assignment Problems

- Specified at the individual level
- Incorporates rest, vacation time, medical leave, training
- Focus is not on cost but crew needs/ preferences

The Bidline Problem

- Pairings are constructed into generic schedules
- Schedules are posted and crew members bid for specific schedules
- More senior crew members given greater priority
- Commonly used in the U.S.

The Rostering Problem

- Personalized pairings are constructed
- Incorporates crew vacation requests, training needs, etc.
- Higher priority given to more senior crew members
- Typical outside the U.S.

Pairing vs. Assignment

- Similarities
 - Sequencing flights to form pairings sequencing pairings to form schedules
 - Set partitioning formulations (possibly with side constraints)
- Differences
 - Complete crews vs. single crew member
 - Objective function
 - Time horizon

Cockpit vs. Cabin

- Cockpit crews stay together; cabin crews do not
- Cockpit crew makeup is fixed; cabin needs can vary by demand
- Cabin crew members have a wider range of aircraft they can staff
- Cockpit crew members receive higher salaries

Domestic vs. International

- Domestic U.S. networks of large carriers are predominantly hub-and-spoke
 - With many connection opportunities
 - Domestic networks are usually daily
- International networks are typically point-topoint
 - More of a need to use *deadheads*
 - International networks are typically weekly

Recovery Problem

- Given a disruption, adjust the crew schedule so that it becomes feasible
- What is our objective?
 - Return to original schedule as quickly as possible?
 - Minimize passenger disruptions?
 - Minimize cost?
- Limited time horizon -- need fast heuristics

Focus: Daily Domestic Cockpit Crew Pairing Problem

- Problem description
- Formulation
- Solution approaches
- Computational results
- Integration with aircraft routing, FAM

The Crew Pairing Problem

Given a set of flights (corresponding to an individual fleet type or *fleet family*), choose a minimum cost set of pairings such that every flight is covered exactly once (i.e. every flight is contained in exactly one pairing)

Notation

- P^k is the set of feasible pairings for fleet type k
- F^k is the set of daily flights assigned to fleet type k
- $\delta_{\rm fp}$ is defined to be 1 if flight f is included in pairing p, else 0
- c_p is the cost of pairing p
- x_p is a binary decision variable value 1 indicates that pairing p is chosen, else 0

Formulation

 $\min \sum_{p \in P^k} c_p x_p$

st

 $\sum_{p \in P^k} \delta_{fp} x_p = 1 \quad \forall f \in F^k$

 $x_p \in \{0,1\} \quad \forall p \in \mathbf{P}^k$

Barnhart 1.206J/16.77J/ESD.215J

Is this an easy problem?

- Linear objective function
- No complex feasibility rules
- Easy to write/intuitive
- Small number of constraints
- Huge number of integer variables

How do we solve it?

- We need branch-and-bound to solve the IP
- We need column generation to solve the individual LP relaxations
- Branch-and-price combines the two

Column Generation Review

- Column generation solves *linear* programs with a large number of variables
- Start with a *restricted master* a subset of the variables
- Solve to optimality
- Input the duals to a *pricing problem* and look for negative reduced cost columns
- Repeat

Generating Crew Pairings

- Start with enough columns to ensure a feasible solution (may need to use artificial variables)
- Solve Restricted Master problem
- Look for one or more negative reduced cost columns for each crew base; add to Restricted Master problem and re-solve
- If no new columns are found, LP is optimal

Crew Pairing Reduced Cost

Reduced cost of pairing p is:

 $\max \{ \sum_{d \in p} \text{duty cost of } d, f_p * TAFB, \text{min guarantee pay} \}$ $-\sum_{f \in F^k} \delta_{fp} \pi_f$

Formulation

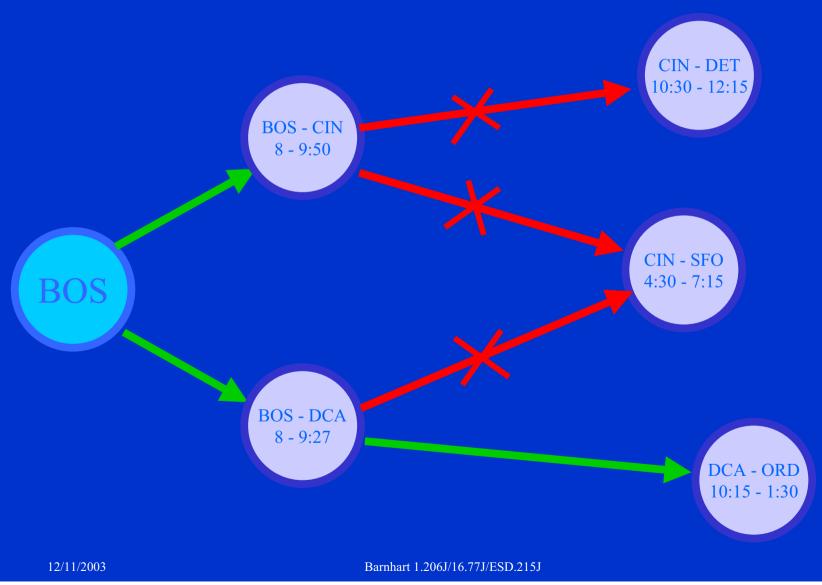
 $\min \sum_{p \in P^k} c_p x_p$

st

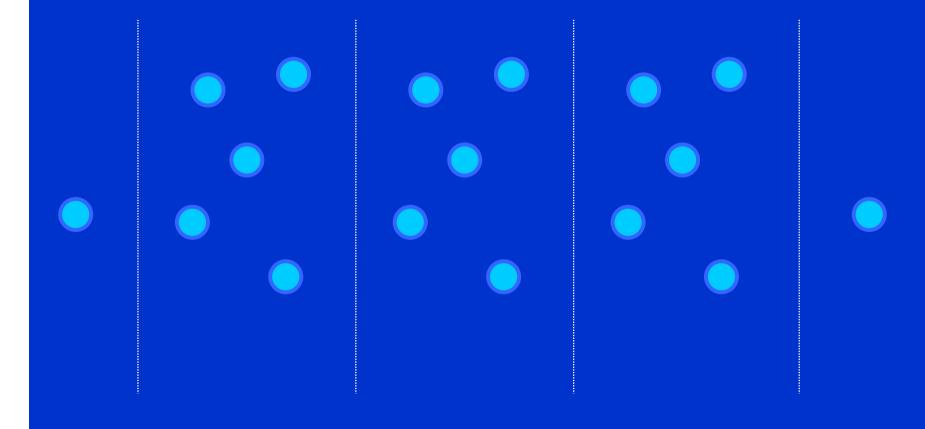
 $\sum_{p \in P^k} \delta_{fp} x_p = 1 \quad \forall f \in F^k$

 $x_p \in \{0,1\} \quad \forall p \in \mathbf{P}^k$

Barnhart 1.206J/16.77J/ESD.215J


Pricing as a Shortest Path Problem

- A pairing can be seen as a path, where nodes represent flights and arcs represent valid connections
- Paths must start/end at a given crew base
- For daily problem, paths cannot repeat a flight
- Paths must satisfy duty and pairing rules
- Path costs can be computed via labels corresponding to pairing reduced costs


Network Structure

- Connection arc network
 - Nodes represent flights
 - Arcs represent (potentially) feasible connections
- Multiple copies of the network in order to construct multi-day pairings
- Source/sink nodes at the crew base

Network Example

Multi-Day Network

Labels

Feasibility:

- Pairing:
 - Min rest between duties
 - Max rest between duties
 - Max # of duties
- Duty:
 - Max flying
 - Max duty time
 - Min idle (connection arcs)
 - Max idle (connections arcs)

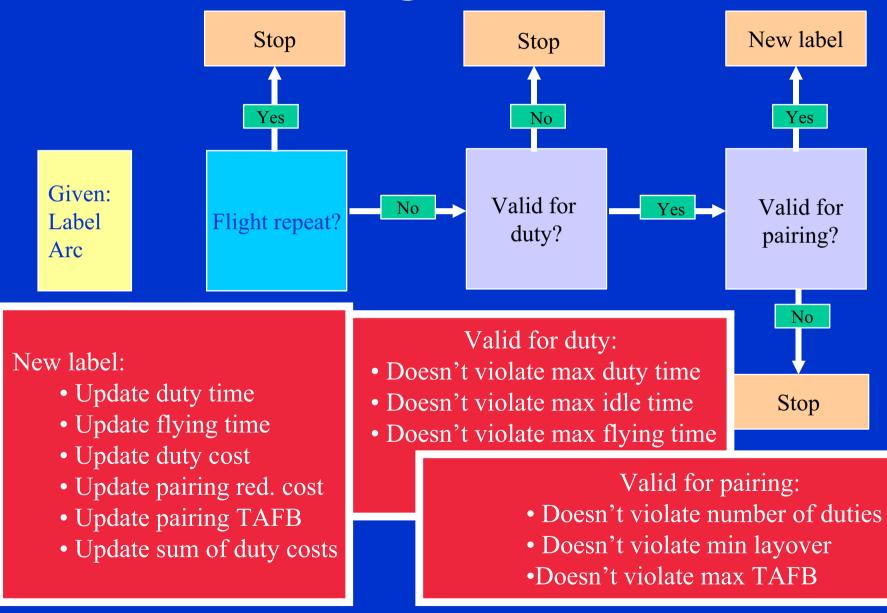
Cost:

- Pairing -- max of:
 - Sum of duty costs
 - $-f_{p} * TAFB$
 - min guarantee pay
- Duty -- max of:
 - Total flying time
 - $-f_d$ * total duty time
 - min guarantee pay

Labels, cont.

Labels have to track:

- Current duty:
 - Flying time in current duty
 - Total elapsed time in current duty
 - Current duty cost
- Pairing:
 - Pairing TAFB
 - Sum of completed duties' costs
 - # completed duties
 - Current pairing reduced cost

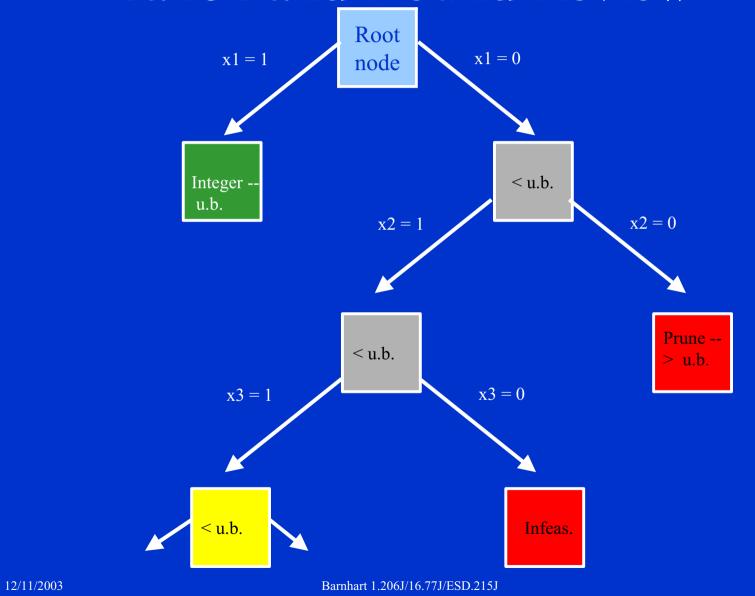

Labels also contain:

- Label id
- Previous flight
- Previous flight's label id

Processing Labels

- For each node (in topological order)
 - For each label at that node
 - For each connection arc out of that node
 - Process the arc
 - If a label is created, check existing labels for dominance
 - If the node ends at the crew base and reduced cost is negative, a potential column's been found

Processing Labels, cont.


12/11/2003

Barnhart 1.206J/16.77J/ESD.215J

Column Generation and Network Structure – Duty assignment networks

- Large number of arcs
 - One arc per duty
 - Can be hundreds of connections per duty
 - Ex: 363 flights, 7838 duties, 1.65 M connections
- Fewer labels per path duty rules are built in
- Flight assignment networks
 - Smaller number of arcs
 - One arc per flight
 - Typically not more than 30 connections per flight
 - Larger number of labels

Branch-and-Bound Review

Heuristic Solution Approach

- Branch-and-bound with only root node LP solved using column generation

 No feasible solution may exist in the columns generated to solve the root node LP
 - Conventional wisdom: need some "bad" columns to get a "good" solution

Branch-and-Price

- Need a branching rule that is compatible with column generation
 - Rule must be enforceable without changing the structure of the pricing problem
 - Multi-label shortest path problem
 - Branching based on variable dichotomy is not compatible
 - Cannot restrict the shortest path algorithm from finding a path (that is, a pairing)

Variable Dichotomy Branching

- Given a fractional solution to the crew pairing problem, pick *p* s.t. $0 < x_p < 1$
- Two new problems: $\{x_p = 1, x_p = 0\}$
- Drawbacks:
 - Imbalance
 - Maximum depth of tree
 - Enforcing in the pricing problem:
 - $x_p = 1$ is easy
 - $x_p = 0$ is hard

Branching on Follow-Ons

• Given a fractional solution, there must be two flights *f1*, *f2* such that *f1* is followed by *f2* a fractional amount in the solution

- Pairing *f1-f2-f3* has value 1/2 and pairing f_1 - f_4 has value 1/2

• Branch on $\{f_1 \text{ is/is not followed by } f_2\}$

– More balanced

- Fewer branching levels
- Easy to enforce in pricing problem

How to Alter Network to Enforce Branching Decision

- If follow-on flights *a-b* required
 Remove all connection arcs from *a* to flights other than *b*
 - Remove all connection arcs into *b* from flights other than *a*
- If follow-on flights *a-b* disallowed
 Remove all connection arcs from *a* to *b*

How to Select Flight Pairs for Branching

- Sum current LP solution values of all possible flight follow-ons
- Branch on the follow-on with the greatest value

Computational Results

American Airlines (1993):

- 25,000+ crew members
- Save \$20+ million/year
- Solutions in 4 10 hours

Other Crew Scheduling Research Topics

- Cabin crew scheduling
- Integrating pairing and assignment
- Robust planning
- Recovery
- Integrated models