1.206J/16.77J/ESD.215J Airline Schedule Planning

> Cynthia Barnhart Spring 2003

1.206J/16.77J/ESD.215J Airline Schedule Planning

Outline

- Sign-up Sheet
- Syllabus
- The Schedule Planning Process
- Flight Networks
 - Time-line networks
 - Connection networks
- Acyclic Networks
- Shortest Paths on Acyclic Networks
- Multi-label Shortest Paths on Acyclic Networks

12/10/2003

Airline Schedule Planning

Airline Schedule Planning: Integration

Airline Schedule Planning: Integration

Flight Schedule

• Minimum turn times = 30 minutes

Flight No.	Origin	Destin.	Dep. Time	Arrival Time
1	А	В	6:30	8:30
2	В	С	9 : 30	11:00
3	С	В	16:00	17:00
4	В	А	18:00	20:00

Time-Space Flight Network Nodes

- Associated with each node j is a location
 1(j) and a time t(j)
- A Departure Node *j* corresponds to a flight departure from location *l(j)* at time *t(j)*
- **An Arrival Node** *j* corresponds to a flight arrival at location *l(j)* at time *t(j) min_turn_time*

- t(j)= arrival time of flight + min_turn_time =
flight ready time

Time-Space Flight Network Arcs

- Associated with each arc *jk* (with endnodes *j* and *k*) is an aircraft movement in space and time
- A Flight Arc *jk* represents a flight departing location *l(j)* at time *t(j)* and arriving at location *l(k)* at time *t(k) min_turn_time*
- A Ground Arc or Connection Arc jk represents an aircraft on the ground at location l(j) (= l(k)) from time t(j) until time t(k)

Time-Line Network

• Ground arcs

12/10/2003

Connection Network

• Connection arcs

12/10/2003

Time-Line vs. Connection Flight Networks

- For large-scale problems, time-line network has fewer ground arcs than connection arcs in the connection network
 - Further reduction in network size possible through "node consolidation"
- Connection network allows more complex relations among flights
 - Allows a flight to connect with *only a subset* of later flights

Time-Line Network

Node Consolidation

Flight Networks and Shortest Paths

- Shortest paths on flight networks correspond to:
 - Minimum cost itineraries for passengers
 - Maximum profit aircraft routes
 - Minimum cost crew work schedules (on crewfeasible paths only)

Important to be able to determine shortest paths in flight networks

Shortest Path Challenges in Flight Networks

- Flight networks are large
 - Thousands of flight arcs and ground arcs; thousands of flight arcs and tens of thousands connection arcs
- For many airline optimization problems, repeatedly must find shortest paths
- Must consider only "feasible" paths when determining shortest path
 - "Ready time" (not "arrival time") of flight arrival nodes ensures feasibility of aircraft routes
 - Feasible crew work schedules correspond to a *small* subset of possible network paths
 - Identify the shortest "feasible" paths (i.e., feasible work schedules) using multi-label shortest path algorithms

Acyclic Directed Networks

Acyclic Networks

• Time-line and Connection networks are acyclic directed networks

Cyclic Networks

12/10/2003

Acyclic Networks and Shortest Paths

- Efficient algorithms exist for finding shortest paths on acyclic networks
 - Amount of work is directly proportional to the number of arcs in the network
 - Topological ordering necessary
 - Consider a network node *j* and let *n(j)* denote its number
 - The nodes of a network *G* are topologically ordered if for each arc *jk* in *G*, *n(j) < n(k)*

Topological Orderings

12/10/2003

Topological Ordering Algorithm

- Given an acyclic graph G, let n= 1 and n(j)=0 for each node j in G
- Repeat until n= |N|+1 (where |N| is the number of nodes in G)
 - -Select any node *j* with no incoming arcs and n(j) = 0.

 $-\operatorname{Let} n(j) = n$

– Delete all arcs outgoing from j

-Let n = n+1

Shortest Path Algorithm for Acyclic Networks

- Given acyclic graph G, let *l(j)* denote the length of the shortest path to node *j*, *p(j)* denote the predecessor node of *j* on the shortest path and *c(jk)* the cost of arc *jk*.
- Set *l(j)=infinity* and *p(j)= -1* for each node *j* in
 G, let *n=1*, and set *l(1)=0* and *p(1)=0*
- For $n \le |N| + 1$
 - Select node *j* with n(j) = n
 - For each arc *jk* let l(k)=min(l(k), l(j)+c(jk))
 - If l(k)=l(j)+c(jk), set p(k)=j

- Let n = n+1

Multiple Label (Constrained) Shortest Paths on Acyclic Networks

- Consider the objective of finding the minimum cost path with flying time less than a specified value *F*
- Let label t_p(j) denote the flying time on path p to node j and label l_p(j) denote the cost of path p to node j, for any j
- Only paths with t_p(j) < F, at any node j, are considered (the rest are excluded)
- A label set must be maintained at node *j* for each nondominated path to *j*
 - A path *p*' is dominated by path *p* at node *j* if $l_p(j) > l_p(j)$ and $t_p(j) > t_p(j)$
 - If p' is not dominated by any path p at node j, p' is non-dominated at j
 - In the worst case, a label set is maintained at each node *j* for each path *p* into *j*

Constrained Shortest Paths and Crew Scheduling

- Label sets are used to ensure that the shortest path is a "feasible" path
 - Labels are used to count the number of work hours in a day, the number of hours a crew is away from their home base, the number of flights in a given day, the number of hours rest in a 24 hour period, etc...
 - In some applications, there are over 2 dozen labels in a label set
- > Many paths are non-dominated
- Exponential growth in the number of label sets (one set for each non-dominated path) at each node

Constrained Shortest Path Notation for Acyclic Networks

- Given acyclic graph G,
 - $-l_p^{k}(j)$ denotes the value of label k (e.g., length, flying time, etc.) on label set p at node j
 - $p_p(j)$ denotes the predecessor node for label set p at node j
 - *pp_p(j)* denotes the predecessor label set for label set *p* at node *j*
 - -c(jk) denotes the cost of arc *jk*
 - *m* denotes the maximum possible number of non-dominated label sets at any node *j*
 - *np(j)* denotes the number of non-dominated label sets for node *j*

Constrained Shortest Path Algorithm for Acyclic Networks

- For p = 1 to *m*, let $l_p^k(j) = infinity$ for each *k*, and np(j)=0, $p_p(j)=-1$ and $pp_p(j)=-1$ for each node *j* in *G*
- Let n=1 and set np(1)=1, $l_1^k(1)=0$ for each k, $p_1(1)=0$ and $pp_1(1)=0$
- For n < |N| + 1
 - Select node *i* with n(i) = n
 - For each non-dominated p at node i
 - For each arc ij, let np(j) = np(j)+1, $p_{np(j)}(j)=i$, $pp_{np(j)}(j)=p$ - For each k, let $l_{np(j)}^{k}(j) = l_{p}^{k}(i)+c(ij)$
 - If $l_{np(j)} \stackrel{k}{\underset{j}{=}} l_s \stackrel{k}{\underset{j}{=}} j$ for some s=1,..,np(j)-1, then dominated and set np(j) = np(j)-1

 $\underline{-12/10/2003}$ Let n = n + 1