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1.206J/16.77J/ESD.215J Airline 

Schedule Planning

Outline

– Sign-up Sheet

– Syllabus

– The Schedule Planning Process

– Flight Networks
• Time-line networks

• Connection networks

– Acyclic Networks

– Shortest Paths on Acyclic Networks

– Multi-label Shortest Paths on Acyclic Networks
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Fleet Planning

Schedule Planning
- Route Development
- Schedule Development

o Frequency Planning
o Timetable Development
o Fleet Assignment
o Aircraft Rotations

Crew Scheduling

Airport Resource 
Management

Pricing

Revenue
Management

Sales and 
Distribution

Operations Control 
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Route individual aircraft honoring

maintenance restrictions

Assign aircraft types to flight legs 

such that contribution is maximized

A flight specifies origin, destination, 

and departure time

Contribution = Revenue - Costs

Airline Schedule Planning

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling

Select optimal set of flight legs

in a schedule

Assign crew (pilots and/or flight 

attendants) to flight legs
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Airline Schedule Planning:  

Integration

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling
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Airline Schedule Planning:  

Integration

Schedule Design

Fleet Assignment

Aircraft Routing

Crew Scheduling
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Flight Schedule

• Minimum turn times = 30 minutes

20:0018:00AB4

17:0016:00BC3

11:009:30CB2

8:306:30BA1

Arrival

Time

Dep.

Time

Destin.OriginFlight

No.
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Time-Space Flight Network Nodes

• Associated with each node j is a location
l(j) and a time t(j)

• A Departure Node j corresponds to a 
flight departure from location l(j) at time 
t(j)

• An Arrival Node j corresponds to a 
flight arrival at location l(j) at time t(j) –
min_turn_time

– t(j)= arrival time of flight + min_turn_time = 
flight ready time
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Time-Space Flight Network Arcs
• Associated with each arc jk (with

endnodes j and k)  is an aircraft 
movement in space and time

• A Flight Arc jk represents a flight 
departing location l(j) at time t(j) and
arriving at location l(k) at time t(k) –
min_turn_time

• A Ground Arc or Connection Arc jk
represents an aircraft on the ground at 
location l(j) (= l(k)) from time t(j) until
time t(k)
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Time-Line Network

8:00 12:00 16:00 20:00 8:00 12:00 16:00 20:00

City A

City B

City C

City D

• Ground arcs
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Connection Network

8:00 12:00 16:00 20:00 8:00 12:00 16:00 20:00

City A

City B

City C

City D

• Connection arcs
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Time-Line vs. Connection Flight 

Networks

• For large-scale problems, time-line network 
has fewer ground arcs than connection arcs in 
the connection network
– Further reduction in network size possible 

through “node consolidation”

• Connection network allows more complex 
relations among flights
– Allows a flight to connect with only a subset of

later flights
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Time-Line Network

I J

A CF H

D E

B G
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Node Consolidation

I J

A CF H

D E

B G
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Flight Networks and Shortest Paths

• Shortest paths on flight networks correspond 
to:
– Minimum cost itineraries for passengers

– Maximum profit aircraft routes

– Minimum cost crew work schedules (on crew-
feasible paths only)

Important to be able to determine shortest 
paths in flight networks
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Shortest Path Challenges in Flight 

Networks
• Flight networks are large 

• Thousands of flight arcs and ground arcs; thousands of 
flight arcs and tens of thousands connection arcs

• For many airline optimization problems,  repeatedly
must find shortest paths 

• Must consider only “feasible” paths when 
determining shortest path
• “Ready time” (not “arrival time”) of flight arrival nodes 

ensures feasibility of aircraft routes

• Feasible crew work schedules correspond to a small
subset of possible network paths 
• Identify the shortest “feasible” paths (i.e.,  feasible work 

schedules) using multi-label shortest path algorithms



12/10/2003 Barnhart 1.206J/16.77J/ESD.215J 17

Cyclic Networks

Acyclic Networks

Acyclic Directed Networks

• Time-line and Connection networks are 

acyclic directed networks
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Acyclic Networks and Shortest 

Paths

• Efficient algorithms exist for finding shortest 
paths on acyclic networks
– Amount of work is directly proportional to the 

number of arcs in the network 

– Topological ordering necessary
• Consider a network node j and let n(j) denote its 

number

• The nodes of a network G are topologically ordered if 
for each arc jk in G, n(j) < n(k)
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Topological Ordering Algorithm

• Given an acyclic graph G, let n= 1 and
n(j)=0 for each node j in G

• Repeat until n=|N|+1 (where |N| is
the number of nodes in G)
– Select any node j with no incoming arcs 

and n(j) = 0.

– Let n(j) = n

– Delete all arcs outgoing from j

– Let n = n+1
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Shortest Paths on Acyclic 

Networks

1: inf, -1

n(j):  l(j), p(j)

2: inf, -1

3: inf, -1

4: inf, -1

5: inf, -1

6: inf, -1

7: inf, -1

8: inf, -1

9: inf, -1

10: inf, -11: 0, 0

2: 10, 1

3: 0, 1

8: 10, 2

5: 11, 25: 0, 3

4: 1, 3

8: 2, 4

6: 1, 4

7: 1, 5

6: 1, 5

7: 1, 5

9: 1, 6

10: 1, 7

9: 1, 6

10: 1, 7
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Shortest Path Algorithm for Acyclic 

Networks
• Given acyclic graph G, let l(j) denote the 

length of the shortest path to node j, p(j) 
denote the predecessor node of j on the 
shortest path and c(jk) the cost of arc jk

• Set l(j)=infinity and p(j)= -1 for each node j in
G, let n=1, and set l(1)= 0 and p(1)=0

• For n<|N|+1

– Select node j with n(j) = n 

– For each arc jk let l(k)=min(l(k), l(j)+c(jk))

• If l(k)=l(j)+c(jk), set p(k)=j

– Let n = n+1
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Multiple Label (Constrained) Shortest 

Paths on Acyclic Networks

• Consider the objective of finding the minimum cost path 
with flying time less than a specified value F

• Let label tp(j) denote the flying time on path p to node j and
label lp(j) denote the cost of path p to node j, for any j

• Only paths with tp(j) < F, at any node j, are considered (the 
rest are excluded)

• A label set must be maintained at node j for each non-
dominated path to j
– A path p’ is dominated by path p at node j if lp’(j) > lp(j) and tp’(j) > tp(j)

– If p’ is not dominated by any path p at node j,  p’ is non-dominated at
j

– In the worst case, a label set is maintained at each node j for each 
path p into j
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Constrained Shortest Paths and 

Crew Scheduling

• Label sets are used to ensure that the shortest path 
is a “feasible” path
– Labels are used to count the number of work hours in a 

day, the number of hours a crew is away from their home 
base, the number of flights in a given day, the number of 
hours rest in a 24 hour period, etc…

– In some applications, there are over 2 dozen labels in a 
label set

Many paths are non-dominated

Exponential growth in the number of label sets (one 
set for each non-dominated path) at each node
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Shortest Paths on Acyclic 

Networks

1: inf, inf, -1, -1

p: lp
1(j), lp

2(j), pp(j), ppp(j)

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -1

1: inf, inf, -1, -11: 0, 0, 0, 0

1: 10, 0, 1, 1

1: 0, 0, 1, 1

1: 10, 1, 2, 1

1: 11, 1, 2, 11: 0, 1, 3, 1

1: 1, 1, 3, 1

2: 2, 3, 4, 1

1: 1, 3, 4, 1

1: 1, 3, 5, 1

1: 1, 3, 5, 1

1: 1, 3, 5, 1

1: 1, 6, 6, 1

1: 1, 7, 7, 1

2: 2, 4, 7, 1

2: 11, 6, 8, 1

3: 3, 8, 8, 2

Max value of label 2 = 7
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Constrained Shortest Path Notation 

for Acyclic Networks
• Given acyclic graph G,

– lp
k(j) denotes the value of label k (e.g., length, 

flying time, etc.)  on label set p at node j

– pp(j) denotes the predecessor node for label set p
at node j

– ppp(j) denotes the predecessor label set for label set 
p at node j

– c(jk) denotes the cost of arc jk

– m denotes the maximum possible number of 
non-dominated label sets at any node j

– np(j) denotes the number of non-dominated label 
sets for node j
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Constrained Shortest Path Algorithm for 

Acyclic Networks
• For p = 1 to m, let lp

k(j)=infinity for each k,
and np(j)=0, pp(j)= -1 and ppp(j)= -1 for each 
node j in G

• Let n=1 and set np(1)=1, l1
k(1)= 0 for each k,

p1(1)=0 and pp1(1)=0

• For n<|N|+1

– Select node i with n(i) = n 

– For each non-dominated p at node i
• For each arc ij, let np(j)= np(j)+1, pnp(j)(j)=i, ppnp(j)(j)=p

– For each k, let lnp(j)
k(j) =lp

k(i)+c(ij)

• If lnp(j)
k(j)>ls

k(j) for some s=1,..,np(j)-1, then dominated 
and set np(j)= np(j)-1

– Let n = n+1


