1.225J (ESD 205) Transportation Flow Systems

Lecture 11 Traffic Flow Models, and Traffic Flow Management in Road Networks

Prof. Ismail Chabini and Prof. Amedeo R. Odoni

From Microscopic Models To Macroscopic Models Simple car-following model: $\ddot{x}_{n+1}(t) = a(\dot{x}_n(t) - \dot{x}_{n+1}(t))$ (T = 0)Fundamental diagram: $q = q_{max}(1 - \frac{k}{k_{jam}})$ Proof of "equivalency" $\ddot{x}_{n+1}(y) = a(\dot{x}_n(y) - \dot{x}_{n+1}(y))$ $\ddot{x}_{n+1}(y)dy = a(\dot{x}_n(y) - \dot{x}_{n+1}(y))dy = a\dot{l}_{n+1}(t)dy$ $\int_0^t \ddot{x}_{n+1}(y)dy = \int_0^t a\dot{l}_{n+1}(t)dy$ $u_{n+1}(t) - u_{n+1}(0) = a(l_{n+1}(t) - l_{n+1}(0))$ $u_{n+1}(t) = al_{n+1}(t) + u_{n+1}(0) - al_{n+1}(0)$ If $l_{n+1}(t) = 0$, then $u_{n+1}(t) = 0 \Rightarrow u_{n+1}(0) - al_{n+1}(0) = 0$ 1.225, 11/28/02 Lecture 9, Page 5

From Microscopic Model to Macroscopic Model $u_{n+1}(t) = al_{n+1}(t) = a(\frac{1}{k_{n+1}(t)} - \frac{1}{k_{jam}})$ $\Rightarrow u = a(\frac{1}{k} - \frac{1}{k_{jam}})$ $\Rightarrow q = uk = a(\frac{1}{k} - \frac{1}{k_{jam}})k = a(1 - \frac{k}{k_{jam}})$ If k = 0, then q = aSince $q = a \ge a(1 - \frac{k}{k_{jam}})$, then $a = q_{max}$ $\Rightarrow q = q_{max}(1 - \frac{k}{k_{jam}})$ \Box Note: if $k \to 0$, then $u \to \infty$. Does this make sense? 1.25, 112802

$\ddot{x}_{n+1}(t+T) = a_0 \dot{x}_{n+1}^m(t+T) \frac{\dot{x}_n(t) - \dot{x}_{n+1}(t)}{\left(x_n(t) - x_{n+1}(t)\right)^l}$			
l	m	Flow vs. Density	
0	0	$q = q_m \left(1 - \frac{k}{k_{jam}} \right)$	
1	0	$q = u_c k \ln\left(\frac{k_{jam}}{k}\right)$	
1.5	0	$q = u_{\max} \left[1 - \left(\frac{k}{k_{jam}} \right)^{0.5} \right]$	
2	0	$q = u_{\max}\left(1 - \frac{k}{k_{jam}}\right)$	
2	1	$q = u_{\max} k \exp\left(1 - \frac{k}{k_{jam}}\right)$	
3	1	$q = u_{\max} k \exp\left[-\frac{1}{2} \left(\frac{k}{k_{jam}}\right)^2\right]$	

Dynamic Traffic Flow Methods

□ Traffic assignment models:

- require time-dependent O-D flows
- incorporate driver behavior, and information provision
- require link network performance models
- have high computational requirements
- □ Three modeling/algorithmic components:
 - Travelers route-choice
 - Prediction of travel times when vehicle paths are known
 - Route-guidance provision

□ Two algorithmic components:

- Path-generation
- Dynamic traffic assignment

1.225, 11/28/02

Lecture 9, Page 17

A Small Real-Word Network Model: Amsterdam Beltway Network

	ts from Back Back Back	
Controls	Total Travel Time (mins)	Gap from System-Optimum (%)
Existing	11784	14.12
Webster	11781	14.1
Smith P ₀	11566	12.02
Cournot	10642	3.07
Stackelberg	10504	1.73
Monopoly	10325	0

Lecture 11 Summary

• Overview of some traffic flow models:

- Modeling of single link: Car-following models
- Dynamic macroscopic models of highway traffic

Dynamic traffic flow management in road networks:

- Concepts
- Dynamic traffic assignment
- Combined dynamic traffic signal control-assignment

□ The ACTS Group

1.225, 11/28/02

Lecture 9, Page 29