Macro Design Models for a Single Route

Outline

- Introduction to analysis approach
- Bus frequency model
- Bus size model
- Stop/station spacing model

Introduction to Analysis Approach

- Basic approach is to establish an aggregate total cost function including:
 - operator cost as f (design parameters)
 - user cost as g (design parameters)
- Minimize total cost function to determine optimal design parameter (s.t. constraints)
- Variants include:
 - Maximize service quality s.t. budget constraint
 - Maximize consumer surplus s.t. budget constraint

1.258J 11.541J ESD.226J Lecture 11, Spring 2017

1

Bus Frequency Model: Square Root Rule

- **Problem** define bus service frequency on a route as a function of ridership
- total cost = operator cost + user cost

$$Z = c \bullet \frac{t}{h} + b \bullet r \bullet \frac{h}{2}$$

where Z = total (operator + user) cost per unit time

- c =operating cost per unit time
- t = round trip time
- h = headway the decision variable to be determined
- b = value of unit passenger waiting time
- r = ridership per unit time

Minimizing Z w.r.t. h yields :

$$h = \sqrt{\frac{2ct}{br}} \text{ or } \sqrt{2\left(\frac{c}{b}\right)\left(\frac{t}{r}\right)}$$

Bus Frequency Model: Square Root Rule

1.258J 11.541J ESD.226J

Lecture 11, Spring 2017

- This is the Square Root Rule with the following implications:
 - High frequency is appropriate where (cost of wait time/cost of operations time) is high
 - Frequency is proportional to the square root of ridership per unit time for routes of similar length

1.258J 11.541J ESD.226J Lecture 11, Spring 2017

Bus Frequency Model: Square Root Rule

 Load factor is proportional to the square root of the product of ridership and route length

- Critical Assumptions
 - bus capacity is never binding
 - wait time savings are the only benefits of higher frequency

Bus Frequency Model: Square Root Rule

- ridership f (frequency)
- o simple wait time model
- budget constraint is not binding
- Possible Remedies
 - introduce bus capacity constraint
 - modify objective function
 - introduce r = f(h) and re-define objective function
 - modify objective function
 - introduce budget constraint

1.258J 11.541J ESD.226J Lecture 11, Spring 2017	5	1.258J 11.541J ESD.226J Lecture 11, Spring 2017

Bus Frequency Example

lf

c =\$90/bus hour

b = \$10/passenger hour

t = 90 mins

r = 1,000 passengers/hour

Then

h_{OPT} ≈ 11 mins

Bus Size Model

- **Problem** define optimal bus size for a route
- Assumptions
 - Desired load factor is constant
 - Labor cost/bus hour is independent of bus size
 - Bus dwell time costs per passenger are independent of bus size
- Using the same notation as before, plus
 - \circ w = labor cost per bus hour
 - p = passenger flow past peak load point
 - k = desired bus load (the decision variable)

Then
$$Z = w \cdot \frac{t}{h} + b \cdot r \cdot \frac{h}{2}$$

Now $h = \frac{k}{p}$ by assumption above
 $\therefore \qquad Z = \frac{wtp}{k} + \frac{brk}{2p}$

Minimizing Z w.r.t. k gives : $k_{OPT} = \sqrt{\frac{2p^*v}{rb}}$

Bus Size Model

- Stop/Station Spacing Model
- Result is another square root model, implying that optimal bus size increases with:
 - round trip time
 - ratio of labor cost to passenger wait time cost
 - o peak passenger flow
 - concentration of passenger flows
- Previous example extended with
 - p = 500 pass/hour
 - \circ w = \$40/bus hour
 - all other parameters as before
- Then $k_{OPT} = 55$ passengers

- Problem determine optimal stop or station spacing
 Trade-off is between
 - walk access time (increases with station spacing)
 - in-vehicle time (decreases as station spacing increases)
 - operating cost (decreases as station spacing increases)
 - Z = total cost per unit distance along route and per headway
 - T_{st} = time lost by vehicle making a stop
 - c = vehicle operating cost per unit time
 - s = station/stop spacing the decision variable to be determined
 - N = number of passengers on board vehicle
 - v = value of passenger in-vehicle time
 - D = demand density in passenger per unit route length per headway

1.258J 11.541J ESD.226J

Lecture 11, Spring 2017

- v_{acc} = value of passenger access time
- w = walk speed
- cs = station/stop cost per headway

1.258J 11.541J ESD.226J Lecture 11, Spring 2017

Stop/Station Spacing Model

$$Z = \frac{T_{st}}{s}(c + N \bullet v) + \frac{c_s}{s} + \frac{s}{4} \bullet D \bullet \frac{v_{acc}}{w}$$

Minimizing Z w.r.t. s gives :

$$s_{OPT} = \left[\frac{4w}{Dv_{acc}} \left[c_s + T_{st}(c_v + Nv)\right]\right]^{1/2}$$

- · Yet another square root relationship, implying that
 - station/stop spacing increases with
 - walk speed w
 - station/stop cost c_s
 - time lost per stop T_{st}
 - vehicle operating cost c_v
 - number of passengers on board vehicle N
 - value of in-vehicle time v
 - and decreases with
 - demand density D
 - value of access time v_{acc}

Bus Stop Spacing

U.S. Practice

- 200 m between stops (8 per mile)
- shelters are rare
- little or no schedule information

European Practice

- 320 m between stops (5 per mile)
- named & sheltered
- up to date schedule information
- scheduled time for every stop

9

Stop Spacing Tradeoffs

- Walking time
- Riding time
- Operating cost
- Ride quality

1.258J 11.541J ESD.226J

Lecture 11, Spring 2017

14

far side

near side

Example: MBTA Route 39

AM Peak Inbound results

- Average walking time up 40 s
- Average riding time down 110 s
- Running time down 4.2 min
- Save 1, maybe 2 buses

Furth, P.G. and A. B. Rahbee, "Optimal Bus Stop Spacing Using Dynamic Programming and Geographic Modeling." Transportation Research Record 1731, pp. 15-22, 2000.

@ National Academies of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Bus Stop Locations and Policies

1.258J 11.541J ESD.226J

Lecture 11, Spring 2017

- Far-side (vs. near-side)
 - less queue interference
 - easier pull-in
 - fewer pedestrian conflicts
 - snowbank problem demands priority in maintenance
- Curb extensions
 - benefit transit, pedestrians, and traffic (0.9 min/mi speed increase)
- Pull-out priority
 - it's the law in some states
- Reducing dwell time
 - vehicle design
 - fare collection
 - fare policy

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.