Origin, Destination, and Transfer Key Automated Data Collection Systems

Inference
(ODX) e Automatic Vehicle Location (AVL)
e Automatic Fare Collection (AFC)

Using automatically collected data: AFC, AVL, APC e Automatic Passenger Counting (APC)

Infers destinations in open systems
Infers transfers
Only captures existing demand

Does not make inferences for all fare transactions
o only one tap
o cash
o fare evasion
o trips on other modes

e Validated with surveys
e Needs to be scaled up to full demand
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OD Matrix Estimation Route Level OD Estimation with APC
Route Level APC provides “control totals”
@ Route 2
.,"' ® ® - e ' @ Route 1
o
Network Level Destination
Route #1

APC + seed matrix Stopl | Stop2 | Stop3 | Stop4 | Target
on

Origin Stop 1 25 10 2 40

Full Intermodal Journey Inference

O Stop 2 5 15 30
/ Metro Stop 3 ) 20

Stop 4
—— Busline Target off 0 30 20 40 90
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Iterative Proportional Fitting (IPF)

Also known as biproportional fitting and matrix scaling

Scales cell values of a sampled origin-destination matrix
so that row and column sums equal marginal target values

(counted boardings and alightings)

If all values are strictly positive, IPF converges to a unique

MLE solution

Zeroes affect the solution

Initialization

N m P

Q

Total Alightings
Target Alightings

40
30
20

A B c D Total Boardings Target Boardings
1 i 1 3
1 1 2
1 1
1 2 3
30 20 40
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Iterative Proportional Fitting (IPF)

Step 3
A B C D Total Boardings Target Boardings
A 23.8|7.46|8.75 40 40
B 13.8 | 16.2 30 30
C 20 20 20
D
Total Alightings 23.8 21.3 449
Target Alightings 30 20 40
Step 4
A B C D Total Boardings Target Boardings
A 30 | 7.02(7.79 44.8 40
B 13 [14.4 27.4 30
C 17.8 17.8 20
D
Total Alightings 30 20 40
Target Alightings 30 20 40
Factor 1.3 09 09
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Factor
0.8
1.3
1.2

Iterative Proportional Fitting (IPF)

Step 1

0O m P

[w)

Total Alightings
Target Alightings

Step 2

O m P

o

Total Alightings
Target Alightings
Factor

A B C D Total Boardings Target Boardings
13.3|13.3]|13.3 40 40
15 ] 15 30 30
20 20 20
13.3 28.3 483
30 20 40
A B C D Total Boardings Target Boardings
30 |941] 11 50.4 40
10.6|12.4 23.0 30
16.6 16.6 20
30 20 40
30 20 40
23 07 038
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Iterative Proportional Fitting (IPF)

Step 5

0O m P

[w)

Total Alightings
Target Alightings

Step 6

O m P

o

Total Alightings
Target Alightings
Factor

A B C D Total Boardings Target Boardings
26.8|6.26 [ 6.95 40 40
14.2 [ 15.8 30 30
20 20 20
26.8 20.5 42.7
30 20 40
A B C D Total Boardings Target Boardings
30 |6.12]6.51 42.6 40
13.9]14.8 28.7 30
18.7 18.7 20
30 20 40
30 20 40
1.1 10 09
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13.3
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Iterative Proportional Fitting (IPF)

Step 7

o m >

o

Total Alightings
Target Alightings

Step 8

O W >

=

Total Alightings
Target Alightings
Factor

A B C D Total Boardings Target Boardings
28.2|5.74(6.11 40 40
14.5( 15.5 30 30
20 20 20
28.2 20.3 41.6
30 20 40
A B C D Total Boardings Target Boardings
30 |5.66]5.88 41.5 40
14.3]14.9 29.2 30
19.2 19.2 20
30 20 40
30 20 40
1.1 10 10
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Iterative Proportional Fitting (IPF)

Step 11

o m >

o

Total Alightings
Target Alightings

Step 12

O W >

=

Total Alightings
Target Alightings
Factor

A B C D Total Boardings Target Boardings
29.3|5.28| 54 40 40
14.8  15.2 30 30
20 20 20
29.3 20.1 40.6
30 20 40
A B C D Total Boardings Target Boardings
30 |5.25]5.33 40.6 40
14.7| 15 29.7 30
19.7 19.7 20
30 20 40
30 20 40
10 10 10
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Factor
0.9
1.0
1.1

Factor
1.0
1.0
1.0

Iterative Proportional Fitting (IPF)

Step9
A B C D Total Boardings Target Boardings
A 28.9|5.45| 5.66 40 40
B 14.7 | 15.3 30 30
C 20 20 20
D
Total Alightings 289 20.2 408
Target Alightings 30 20 40
Step 10
A B C D Total Boardings Target Boardings
A 30 |5.41(5.53 40.9 40
B 14.6 | 14.9 29.5 30
C 19.5 19.5 20
D
Total Alightings 30 20 40
Target Alightings 30 20 40
Factor 1.0 10 1.0
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Factor
1.0
1.0
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Route Level ODX with AFC and AVL

AFC Rail

AFC Bus

AVL

Control
totals

TfL MBTA Seoul
Closed Open
Open Open
Closed,
Announcements Detailed,
iBus Heartbeat Including
Time points transfers

ETM (Buses)

APC (sample)

Gatelines

(Rail stations) some
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Origin Inference Origin Inference Results: London

Matching the AFC transactions with the AVL data to infer o |
boarding stops -

@ @ Y -
Previous Next ) I— || L

Stop Stop time ’ _1__r S
e 10 weekdays, 6.1 to 6.5 million Oyster bus boardings per
day
e 96% of boarding locations inferred within £ 5 min
o 96% within £ 2 min
o 93% within £ 1 min
o 28% between arrival and departure times
e 2.6% beyond = 5 min.
e 1.4% not matched to iBus route or trip
" et 10, Sping 2017 3 " Cocre 10, Sping 2017 4
Destination Inference: Closest Stop Destination Inference
Key Assumptions
time
o The destination of many trip segments is close to the origin of the 4 \i
following trip segment. L L >
o No intermediate private transportation mode trip segment transfer
o Passengers will not walk a long distance — .
o Last trip of a day ends at the origin of the first trip of the day (symmetry
assumption) non-transportation activity

Rail L L)
transfer
: .

» Space
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Destination Inference

Feasibility Tests

e distance and time between
alighting and next boarding stop
e relative location

BT STATION ENTRT

HEXT BUS BOARDING

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
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Destination Inference Results: London

Ten-weekday average: 6-10 and 13-17 June 2011

e 15.6 to 16.1 million Oyster transactions
e 9.5to0 10.1 million journey stages
Frequency e 3.0 to 3.1 million Oyster cards
359,000 e 74.5% of bus alighting times and locations
inferred within 1 km of subsequent Oyster tap
300,000 o 5% are the only transaction that day
e 6.7% beyond maximum distance (750 m)
250,000 e 3.2% of buses heading away from first origin
of day
306,000 e 3.6% of buses heading away from next origin
o  2.5% origin or next origin not inferred
—— e 2.5% beyond origin-error tolerance
e 2.5% subsequent origin beyond origin-error
tolerance
100,000
- H'HI
5 L ||I|“||III|II|unnm.......I...a......a.. i e |
] 100 700 750 Boo Qoo 1,000

Dlstamc hm“c‘n \ubsmurm tan and C]DS{S.! stop on current route (meters)

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
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Destination Inference Results: London

Destination inference: 74.6%

Frequency

800 -

200
Wttt ettt AR b

o T T T T T T T T T T T T T T 1

a 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Averapge Speed berween station exit or inferred bus alighting and subsequent station entry (meters per hour)
© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/fag-fair-use/.
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Comparison to Other Sources

e Small stop-by-stop differences between estimated OD and
results from the Bus OD Survey (BODS)

e BODS underestimated the ridership in peak periods and
midday, especially when BODS survey return rates are
low (50%-80%).

e Value for transportation planning

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/.
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Destination Inference: Minimum Cost Path

walk

=9 .‘y T NextTap
Tap - ,.‘, Location

Location ,ga'%-" y
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Destination Inference: MBTA

M Inferred
B No Target Location
Target Location Too Far
B Non-Feasible Path
B Unknown Origin
Next Origin Reached Too Fast
H Circuitous
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Inference Probability
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Interchange (Transfer) Inference

time

Q" —

.

transfer

First Journey

non-transportation activity

transfer
L

Second Journey

=

» Space
" Cocure 10, Spring 2017 %
Trip-Linking Assumptions
Examples:
* Interchange time
(distance)
m | * Maximum bus wait time
empqra (headways)
conditions
Spatial Logical
Examples: conditions conditions
* Maximum interchange
distance
» Circuity between Example:
stages * Must not continue at
* Ending journey near same station, same
origin route, etc.
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Interchange (Transfer) Inference

Journey stage: any portion of a rider’s journey that is
represented by a single Oyster bus record or by a rail
entry/exit pair.

Interchange (Transfer): a transition between two consecutive
journey stages that does not contain a trip-generating activity.
Its primary purpose, rather, is to connect a previous stage’s
origin to a subsequent stage’s destination.

Full journey: a sequential set of journey stages connected
exclusively through interchanges.
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Interchange Inference Results

Ten-day average: 6-10 and 13-17 June 2011

e Link status inferred for 91% of journeys stages
o link status could not be inferred for remaining 9% of stages: assumed not
linked
e Stages per journey:
one stage: 4 million (66%)
two stages: 1.5 million (25%)
three stages: 400,000 (7%)
four or more stages: 170,000 (3%)

140,000 1 Number of Full Journeys

o O O O

© MIT. All rights reserved. This content is excluded from our Creative Commons
license. For more information, see https://ocw.mit.edu/help/ faq-fair-use/.
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Comparison to Travel Surveys (LTDS) Trip-Level Scaling

.. Percentage of Carhdolders

E
50:':' - LTDS
::: mInferred
ol - e AFC, AVL, and ODX give an OD matrix, but only for a
o . ‘ ‘ [] ol Ky  HT MR sample of passenger trips
 JowmepprDay ' e APC gives full count of boardings and alightings
ok ““-wxf Carhvlolder o for all vehicles, a fraction of vehicles, or none
e |terative Proportional Fitting (IPF) can be used to assign
.. remaining destinations in probability
0% 1 - o control totals are APC boardings and alightings minus ODX boardings
ol i and alightings
10% i g 1 ) i
’ : : Scagcs;crjaurncy g ‘ g
© MIT. All rights reserved. This content is excluded from our Creative Commons license. For
more information, see https://ocw.mit.edu/help/faq-fair-use/.
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Trip-Level Scaling with Transfer Trip-Level Scaling with Transfer
Information and without APC Information and without APC

e The complete OD matrix R can be divided into an inferred part I and
a missing part M.

R—I+M Trips followed by transfers may have different OD structure.

Assume that all observed trips followed by a transfer have an inferred

e The missing part can be divided into trips with uninferred destinations destination, i.e. no trips followed by a transfer in U.

U and trips not observed N.

Destinations of uninferred trips in U should be scaled excluding trips
M=U+N followed by a transfer.

Let u be a vector of boardings with uninferred destinations.
e Therefore

Let L be a matrix of destination probability distributions for each

S origin for trips not followed by a transfer.

and we want to estimate R as

e The uninferred part U is estimated by
R=I+U+N U=nul
1.258J 11.541J ESD.226J 31 1.258J 11.541J ESD.226J 32
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Trip-Level Scaling with Transfer
Information and without APC

A portion of trips N is not observed.

— Trips with uninferred origins
— Trips without farebox interaction

They can be estimated by combining ODX with passenger counts,

e.g. APC data.
Let i be a vector of boarding scaling factors.
Assuming destinations are distributed like observed trips,

ﬁ=ﬁ(1+ﬁ)

1.258J 11.541J ESD.226J
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Journey Matrix Scaling

e Problem

o

Estimate expansion factors to scale Oyster-inferred full-journeys to
represent non-Oyster and incompletely documented Oyster journeys.

e Challenges

o
(@]

[e]

Control totals available for stations, routes, but not itineraries

Large number of unique itineraries observed per day (if bus activity is
aggregated to the route level)

Trillions of solutions can satisfy control totals

e Approach

o

Scale all fulljourney itineraries to satisfy control totals

1.258J 11.541J ESD.226J
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Trip-Level Scaling with Transfer
Information and without APC

R =

1.258J 11.541J ESD.226J
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Journey Matrix Scaling

CA,in <

ODX sample

Rail Line (tap in, tap out)

Bus Route (tap in only)

v

ODX sample
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Journey Matrix Scaling

Rail Line (tap in, tap out)

Bus Route (tap in only)

o a3

| CountNode | tineay |
 Station/Stop | Movement | _AB_ | ABc | ABDE | 8 | cBDE | DE |
A in
B out binary location-itinerary incidence matrix
c in
c out B
D in
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Journey Matrix Scaling

Initialize: Update:
;<10 Viel An‘_zbn,i&iti VneN
i€l
Sy by B
R . nenN “n, An .
iy ——— Vi€l
ZHEN bn,i
Count Location Itinerary Totals
Station/Stop Movement| AB ABC ABDE CB CBDE DE | A_hat A  Control
A in 1 i | 1 0 0 0 - 102 400
B out 1 0 1 1 1 0 - 116 450
C in 0 0 0 1 3 0 - 38 150
C out 0 1 0 0 0 0 - 24 100
D in 0 0 1 0 1 1 - 90 350
a 1.00 100 100 100 100 1.00
at 74 76 148 38 74 38
(1+a)t 148 152 296 76 148 76
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Journey Matrix Scaling

Ti=(1+ai)ti Viel

B 2 8 = Z tibn; = Z tiabn; VNEN

LE] 1134
Ain B out
%
6 } AB,out
AA,m
A
v [=8 > C
C Ajin < =y E B,out
E ]
b =
wi
< a
() o
o
~ -
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Journey Matrix Scaling
Initialize: Update:
;<10 Viel An‘_zbn,i&fti VneN
LEl
An
EneN bn.i E""
@« @ ————— Vi€l
ZnEN bn.i
Count Location Itinerary Totals
Station/Stop Movement| AB  ABC ABDE CB CBDE DE |A hat A Control
A in 1 3 1 0 0 0 | 208 102 400
B out 1 0 1 1 1 0 334 116 450
C in 0 0 0 1 1 0 112 38 150
C out 0 1 0 0 0 0 76 24 100
D in 0 0 1 0 1 1 260 90 350
a 1.00 100 1.00 100 100 1.00
at 74 76 148 38 74 38
(1+a)t 148 152 296 76 148 76
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Station A Entry A-Error

Journey Matrix Scaling

Initialize:

a;<10 Vviel

Update:

En — Z bn.i&iti VneN

i€l
Zrus!s.!‘bn,i%'l
Q-8 —=——2 Vi€l
EnEN bn,i
Count Location Itinerary Totals
Station/Stop Movement| AB  ABC ABDE CB CBDE DE |A hat A Control
A in 1 1 1 0 0 0 298 102 400
B out 1 0 il 1 1 0 334 116 450
C in 0 0 0 1 1 0 112 38 150
C out 0 1 0 0 0 0 76 24 100
D in 0 0 1 0 1 1 260 90 350
a 034 033 035 034 034 035
at 26 25 51 13 25 13
(1+a)t 100 101 199 51 99 51
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Journey Matrix Scaling
Convergence of Journey Matrix Scaling Heuristic
vs. Standard Deviation of a Across Itineraries
Iteration
0 5 10 15 20
10
8
6 STDDEV(a) RMSE
4 —001 066
2 —0.05 3.36
0 —0.15 10.72
-2
-4
-6
-8
-10
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Journey Matrix Scaling

Initialize: Update:
@ «<10 Viel An‘_zbn.iaiti VneN
=]
An
Lnenbniz™
@« a; —_—1 yie]
ZnEN bn.t’
Count Location Itinerary Totals
Station/Stop Movement| AB  ABC ABDE CB CBDE DE |A_hat A Control
A in 1 1 1 0 0 0 102 102 400
B out 1 0 1 1 9 0 115 116 450
C in 0 0 0 1 1 0 38 38 150
C out 0 1 0 0 0 0 25 24 100
D in 0 0 1 0 1 1 90 90 350
a 035 032 035 034 034 035
at 26 24 52 13 25 13
(1+a)t 100 100 200 51 99 51
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Journey Matrix Scaling
Recording Period Offset Unadijusted Period Offset Adjusted
Period 0 1 2 3 Count 0 1 2 3 Count
100.0% 0.0%  0.0% 1 0 0 0 22
67% 333%  0.0% : 59 ) 20 0 o [
7 64.7% 350% 03%  0.0% 20 [ ! 0
8 50.4% 40.1%  05%  0.0% a7 32 [ o
9 477% 50.6% 17%  0.0% 383 406 14 q
BOOO 4
7000 - Victoria Underground Station
 — Wednesday, 19 October 2011
6000 4 = = = Raw entries \
= Adjusted entries
g 5000 :
5 = = = Raw exits \
l:::_ 4000 ——— Adjusted exits
s

o

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Hour

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more
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Scaling Factor Results

5,000
4,000
3,000

2,000

« Full-journey itinerary

1] 1,000 2,000 3,000 4,000 50

Sample Flow (passengers per day)
© MIT. All rights reserved. This content is excluded trom our Creative Commons license. For more
information, see https://ocw.mit.edu/help/faq-fair-use/.
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Full-Journey Scaling Results

o EHI L
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Journey Scaling vs. IPF (rail links only)

500

450 All Day

400

300

100

» oD Pair
50

0 50 100 150 200 50 300 350 400 450 50

Scaled Passenger Flow (lterative Poportional Fitting)
© National Academies of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more
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