Fare Policy, Structure, and Technology

- Policy objectives •
- Issues that agencies face ٠
- Fare structure
- Demand response to fare changes
- Fare technology

Fare Policy Objectives

- Fund operations (at least partially) fare recovery ratios (based on 2014 NTD data)
 - 0.14 0.78 (average 0.42) for heavy rail
 - 0.13 0.56 (average 0.27) for light rail
 - 0.01 1.50 (average 0.18) for bus
- Keep transit affordable and promote social equity

1.258J 11.541J ESD.226J

Lecture 21. Spring 2017

- Support growth of demand for transit
- Make fare structure easy to communicate
- Reduce fare system costs •
 - fare collection
 - maintenance of equipment
 - customer service

1.258J 11.541J ESD.226J Lecture 21. Spring 2017

III î **Fare Policy Intersects With Other Areas**

- Finance
 - funding operational expenses
- Operations
 - o fare technology affects dwell times, cycle time, reliability
 - some fare structures require fare inspection
 - maintenance of equipment
- Public Support
 - politicians may promise not raising fares
 - difficulty gathering support to raise fares to improve service quality
 - labor's push for higher wages may require raising fares
- Administration
 - fare technology
 - fare policy and equity analysis
 - revenue sharing across jurisdictions (funding formula)
- Marketing ٠
- Customer Service
 - fare structure and technology are among the first things a customer has to learn before taking transit

IIII Issues that Agencies Face

- Fare recovery ratios
 - typically one third of operating costs, but it varies
 - rare to make a profit systemwide
- How often to raise fares
 - reactive
 - annually, with inflation
- Gathering and maintaining political support
- Raising base fares vs. changing the relative cost of passes and discounted fare products
- Investing in new fare technology

1.258J 11.541J ESD.226J Lecture 21. Spring 2017

3

1

1.258J 11.541J ESD.226J Lecture 21, Spring 2017

4

Fare Structure (Market Segmentation)

Flat Fare

Differentiated Fare

- Spatial
 - Zonal
 - Distance-based
- Temporal
 - Peak surcharge / off-peak discount
- Service
 - Bus vs. rail
 - Regular bus vs. express bus
- Socioeconomic
 - Students
 - Seniors
 - Disabled
 - $\circ \quad \mbox{Social Programs (needs-based subsidy)}$
- By willingness to pre-pay
 - Daily, weekly, 3 day, monthly passes

1.258J 11.541J ESD.226J Lecture 21, Spring 2017

Transfer Pricing and Policy

- Full fare
- Reduced price
- Free
- Time-based

Fare Elasticities

- Fare elasticities can range from -1.0 to 0.0, but are more often closer to -0.40 or -0.30.
 - \circ $\;$ Rail elasticity is about half of bus, e.g. -0.20 or -0.15.
 - Off-peak elasticity is about double of off-peak, e.g. -0.50.
 - $\circ~$ Demand for work trips is much less elastic, e.g. -0.10
 - \circ There is higher demand for free transit than for very cheap transit.
- Raising fares is an effective instrument for increasing revenues, but not to increase demand.
- From a microeconomics perspective, fares should be higher for
 - Ionger trips
 - o trips in more convenient, reliable, comfortable, and frequent modes

1.258J 11.541J ESD.226J

Lecture 21. Spring 2017

- peak period trips
- trips when other modes are inconvenient or costly
- trips subsidized by third parties (government, businesses)

Pay-as-you-go, Passes, and Capping

- Pay-as-you-go
 - ∘ cash
 - $\circ \quad \mbox{tickets} \mbox{ and smartcards} \mbox{ with balance}$
- Passes give a discount to frequent users
 - some fare revenue is derived from pass sales from customers that do not break even
- Passes increase convenience and reduce saliency
- Passes are sometimes subsidized
 - employers
 - universities
 - government (pre-tax benefit)
 - \circ $\,$ social programs, e.g. access to jobs $\,$
- Capping
 - o pay-as-you-go up to daily, weekly, or monthly limit
 - best price guarantee
 - simplifies customer communication

5

Fare Policy Demand Analysis

IIII Communication of Fare Policy

- Traditional 4-step modeling not usually appropriate
 - insufficient spatiotemporal resolution
 - \circ $\,$ total demand does not change much in a relatively short planning horizon
- Fare elasticity analysis is usually simplistic
 - Multiple simultaneous considerations
 - mode alternatives
 - fare products pass vs. pay-as-you-go
 - costs not just in absolute terms, but relative to all alternatives
 - \circ $\;$ Exogenous factors are not controlled for
 - fuel prices
 - employment and residential development
 - tax policy
 - sociodemographics
 - new modes, e.g. transportation network companies (TNCs)

- To the public
 - agency website
 - \circ $\,$ near fare vending machines
 - customer service booths
- For a fare change
 - agency website
 - flyers and posters
 - public hearings
- Via APIs or standard feeds, for trip planners
 - \circ $\,$ some standards exist, but they are not widely adopted
 - GTFS fare_attributes and fare_rules tables
 - some agency's fare rules are complex and cannot be described with existing standards
 - \circ $\;$ no standard API for determining price of a hypothetical trip

1.258J 11.541J ESD.226J

Lecture 21. Spring 2017

1.258J 11.541J ESD.226J Lecture 21, Spring 2017

Partnerships

- Employer partnerships MIT AccessMyCommute
 - Charlie chip embedded in employee badge
 - Marketed as an unlimited use pass
 - $\circ \quad \text{Billed on a unit cost per ride} \\$
 - \circ $\;$ Reduces parking cost (capital, maintenance) for employer $\;$
- Other transportation providers Chicago Transit Authority
 - PACE regional bus
 - Metra commuter rail
 - Divvy bike share
- Mobility as a Service (MaaS)
 - \circ $\;$ monthly payment for a bundle of transportation options
 - e.g. unlimited use transit pass, 5 bike rides, 5 TNC rides

Fare Control

- Tap In
- Tap In + Tap Out
 - may require internal fare vending machine
 - $\circ \quad \text{may require additional station attendants}$
 - may allow negative balance
 - \circ $\;$ useful for zonal systems or for revenue sharing across agencies
- Proof of Payment
 - requires significant inspection
 - higher fare evasion rate

9

Fare Media

Cash

Token

Smartcard

Mobile Ticketing

Contactless Bank Card

1.258J 11.541J ESD.226J Lecture 21, Spring 2017

14

Smartcards

- Small computer inside each card ٠ Harder to break security •
- Enables more complex fare structures
- Faster boarding and higher gatebank throughput •
- Account registration •
 - balance protection
 - autoload
- Better data for analysis and planning
- Embeddable in employee / student badges ٠
- More expensive than tickets •
 - smart tickets are cheaper
- Proprietary systems, multiple standards
 - move towards open-source hardware and specifications
- Integration across agencies of a region is possible but challenging
- Enables retail payment. Examples in Japan and China.

1.258J 11.541J ESD.226J Lecture 21. Spring 2017

IIII Contactless Bank Cards (Open Payment)

- Transit agencies would prefer not having to deal with the complexities and costs of fare collection o outsource to banks and credit card companies
- Credit card companies specialize in payment
- Contactless bank cards are secure •
- Cards can be used directly for payment or as tokens • compatible with complex fare structures
- Also enables payment with NFC smartphones •
- Reduces fare collection cost •
 - simplifies customer communication, even for tourist and occasional user 0
 - 0 relies on open standards, so there is more competition in the market
 - outsources some aspects of customer service to banks 0
 - eliminates costs of creating and distributing smartcards 0
- Equity issue: access to the unbanked
 - o agency can issue cards with pre-loaded balance
 - banks can offer free accounts 0 cards must be obtainable at many locations 0
 - 1.258J 11.541J ESD.226J Lecture 21, Spring 2017

pay

Fare Analytics

MBTA AFC Validations (October 2015) Reset.All

Source: Andrew Stuntz, MST Thesis, 2018.

© MIT. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/

1.258J 11.541J ESD.226J Lecture 21, Spring 2017

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.