Frequency Determination

Service Planning Hierarchy

Outline

- Service Planning Hierarchy
- Introduction to Scheduling
- Setting Running Times and Cycle Times
- Frequency Determination

Planning Step	Frequency of Decisions	Principal Consideration	Principal Analysis Type
Network Design	Infrequent	Service	Judgment & Manual
Frequency Setting			
Timetable Development			
Vehicle Scheduling			
Crew Scheduling	Frequent	Cost	Computer-Based

1.258J 11.541J ESD.226J

Lecture 12, Spring 2017

Sequence of steps

- 1. Determine running times and layovers based on
 - running time data
 - desired reliability levels
- 2. Determine frequencies by route and time period
- 3. Determine number of vehicles by time period
 - policies affecting integer constraints
 - revise step 1 and 2 decisions as needed

Introduction to Scheduling

- focus on transition periods
- 4. Determine timetable, typically
 - start at peak load point
 - generate start and end times
- 5. Chain vehicle trips together to form vehicle blocks
- 6. Cut and combine vehicle blocks to form crew runs

Common Issues

- Integrality constraints
 - If book times are 26 minutes each way, recovery time is 5 minutes at each terminus, and desired frequency is 10 per hour:

$$n_V = \left[\frac{2 \cdot (26+5)}{6}\right] = \lceil 10, \overline{3} \rceil = 12$$

- Trade-off between shortening cycle time by 2 minutes to save 1 vehicle, or not?
- In a similar case, but if desired frequency is 1 per hour, choice is to:
 - shorten cycle time by 2 minutes, or
 - interline with another route having cycle time of 58 minutes or less
- Marginal cost of additional trips
 - A single trip for a vehicle/crew in peak period is typically uneconomic
 - eliminating the single trip and saving the vehicle/crew costs
 - adding additional trips to make a minimum sized "piece of work"
 - Where and when you add extra trips will affect costs.
- Hard constraints
 - Contract terms include hard/soft constraints which determine feasibility

1.258J 11.541J ESD.226J

- Key Input Data
 - Actual running times
 - Current operations practices, e.g., time points
- Typical Steps
 - Define time points
 - Define time periods
 - For each time period
 - set scheduled running time for full route and for each time point
 - set recovery time at end of trip
- Example of Current Practice
 - Use median running time for scheduled time
 - Set half-cycle time (scheduled time + minimum recovery time for 1-way trip) to 95th percentile of cumulative running time distribution

1.258J 11.541J ESD.226

Lecture 12, Spring 2017

Analysis of AVL Data Using Hastus ATP Simple Rules

Figure 2: Route 38 Southbound - Suggested Running and Half-Cycle Times

Prepared by Kevin Muhs (3/15/2011) for TfL using GIRO HASTUS ATP software.

© Kevin Muhs. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Simple Rules and Current Practice

- Frequencies typically based on
 - policy headways vary by time of day and route type
 - maximum loads vary by time of day and route type
 - These represent constraints rather than decision algorithms.
- Maintain constant maximum load factor over periods
 - o at a level below official maximum load factor
 - may vary by time period
- Maintain constant average occupancy level over periods
 - subject to capacity constraint
 - may also be subject to a maximum time for loads above a specified level

5

6

Setting Running Times and Cycle Times

Importance of Frequency Determination

- Major short-range planning decision
 - Affects service quality through wait time and crowding
 - Affects transit path selection (assignment) in complex networks
- Two different contexts
 - Developed country city
 - ridership sensitive to service quality
 - sparse network, little transit path choice
 - maximum acceptable crowding levels specified
 - defined level of subsidy available
 - Developing country city
 - ridership constrained by capacity
 - crowding levels very high
 - dense network, significant transit path choice

- Decision variables
 - headway on each route for each time period

Developed Country Frequency

Determination Problem

- Objective function
 - maximize consumer surplus + social ridership benefit
 - (b × wait time savings) + (a × ridership)
- Constraints
 - o total subsidy is exhausted
 - total fleet size is not exceeded
 - headway meets policy maximums and loading maximums

Furth, P.G. and N.H.M. Wilson, "Setting Frequencies on Bus Routes: Theory and Practice," Transportation Research Record 818, 1981, pp 1-7

1.258J 11.541J ESD.226J

Lecture 12, Spring 2017

© The National Academies of Sciences. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Maximize Social Surplus

Social Surplus

- 1. Consumer Surplus
 - Recall that waiting time is a function of headway

(multiple routes problem)

Context

• Given a fixed fleet size and subsidy,

Maximize Social Surplus

• Determine optimal allocation of this fleet to the various routes (thus setting the frequencies on the routes)

1.258J 11.541J ESD.226J

Lecture 12, Spring 2017

Formulation

- Maximize social surplus across all routes
- Subject to
 - \circ subsidy not exceeded
 - $\circ \quad \text{fleet size not exceeded} \\$
 - level of service is acceptable (meets service delivery policy)

9

10

Maximize Social Surplus

- For a given headway h^* , $w^* = f(h^*)$
- Consumer surplus is

$$CS = b \int_{w^*}^{\infty} r(w) \mathrm{d}w$$

where

- b = monetary value of waiting time
- CS = savings in wait time cost that accrues to riders who would have been prepared to ride at higher waiting times

- 2. Social Benefits (of transit)
 - mobility for non-auto owners
 - \circ reduced congestion
 - reduced pollution
 - \circ reduced energy consumption
 - positive land use effects
- All of these benefits are highly associated with ridership
 - Social benefit for a route = $a \cdot r(w)$
 - where a = monetary value of social benefit associated with an additional rider less the fare

1.258J 11.541J ESD 226J Lecture 12, Spring 2017 Lecture 12, Spring 2017

Maximize Social Surplus

- Since w = f(h), we can derive r(h) from r(w), i.e.
- r(h) = r(f(h))

Total social surplus to maximize:

$$CS + SB = \sum_{\text{routes } i} \left[b \int_{h_i^*}^{\infty} r(h) dh + ar(h_i^*) \right]$$

where h_i^* is the headway on route whose optimal value is to be determined (decision variable)

Maximize Social Surplus: Constraints

Subsidy

$$\sum_{routes} [\text{operating cost - fare revenue}] = \text{subsidy limit}$$
$$\sum_{routes(i)} [c(h_i^*) - F \cdot r(h_i^*)] = S_o$$
fare

Fleet Size

$$\sum_{\text{routes (i)}} \frac{\text{round - trip time}}{h_i^*} \leq \text{Fleet size, M}$$

Level of Service

$$h_{i\square}^{\star} < h_0$$
 headway standard $g(h_{i\square}^{\star}) < l_0$ load standard vehicle load

14

Maximize Social Surplus

Critical Assumptions and Limitations

- independence across routes
 - In model, ridership on a route depends only on the headway of that route.
 - In reality, ridership also depends on headways on competing routes and complementary routes (transfers).
- network design is not considered

Advantages

- ridership = *f* (frequency)
- captures trade-offs across routes
- introduces system wide budget constraint

Efficiency in Subsidy Allocation

This is a resource allocation problem.

For optimality, allocate enough resources to each route so that Marginal Benefit/Cost Ratio is same on each route.

Developing Country City Frequency

Determination Problem

Furth & Wilson (1981) Findings

• Square root rule is valid where constraints are not binding

1.258J 11.541J ESD.226J

Lecture 12, Spring 2017

- Problem can be solved using lagrangian relaxation and single variable search techniques (not very complex)
- Existing scheduling practice over allocates service to peak and to long, high ridership routes
- Minimizing wait time assuming fixed demand gives similar solutions to more complex objective and variable demand
- Best allocation of resources is quite robust with respect to objectives and parameters assumed

Objectives

- minimize crowding levels
- minimize waiting times

Constraints

- loading feasibility (vehicle capacity)
- passenger assignment
- total fleet size

17

Passenger Assignment Heuristic Approach

- 1. Classify flow into:
 - a. captive flow (CF) any OD pairs with only one feasible path
 - b. variable flow (VF) OD pairs with more than one feasible path
- 2. Assign VF in proportion to frequency share on acceptable routes, consistent with random bus arrival process

$$\frac{D_i}{\sum_{j \in J} D_j} = \frac{F_i}{\sum_{j \in J} F_j}$$

where

 $D_{i=}$ = demand assigned to route *i* for specific OD pair

 F_{\square} = frequency offered on route i

 $J\Box$ = set of acceptable routes

Normative (Ideal) Model

Models

- assign passenger flows to routes with minimum round trip vehicle time among all acceptable paths
- compute frequency and fleet size required on this assignment basis
- Descriptive (Realistic) Model
 - assign passengers to alternative acceptable paths in proportion to frequency share in an iterative process
- The difference in the total fleet sizes from the normative and descriptive models indicates the extent of inefficiency resulting from the overlapping route structure.

1.258J 11.541J	ESD.226J
Lecture 12, Sp	ring 2017

21

1.258J 11.541J ESD.226J Lecture 12, Spring 2017

22

Simple Example of Overlapping Routes

- OD pair cd is VF, all other pairs are CF
- Ideally, cd flow would be assigned to route 1, which is shorter, but in reality these passengers will take route 1 or 2, whichever arrives first.
- Some ce passengers may be forced to board route 1 buses, then make a transfer at d to route 2

MIT OpenCourseWare https://ocw.mit.edu/

1.258J / 11.541J Public Transportation Systems Spring 2017

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.