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The nation’s growth and the need to meet mobility, environmental, 
and energy objectives place demands on public transit systems. Current 
systems, some of which are old and in need of upgrading, must expand 
service area, increase service frequency, and improve efficiency to serve 
these demands. Research is necessary to solve operating problems, to 
adapt appropriate new technologies from other industries, and to 
introduce innovations into the transit industry. The Transit 
Cooperative Research Program (TCRP) serves as one of the principal 
means by which the transit industry can develop innovative near-term 
solutions to meet demands placed on it. 

The need for TCRP was originally identified in TRB Special Report 
213—Research for Public Transit: New Directions, published in 1987 and 
based on a study sponsored by the Urban Mass Transportation 
Administration—now the Federal Transit Administration (FTA). A 
report by the American Public Transportation Association (APTA), 
Transportation 2000, also recognized the need for local, problem-
solving research. TCRP, modeled after the longstanding and successful 
National Cooperative Highway Research Program, undertakes research 
and other technical activities in response to the needs of transit service 
providers. The scope of TCRP includes a variety of transit research 
fields including planning, service configuration, equipment, facilities, 
operations, human resources, maintenance, policy, and administrative 
practices. 

TCRP was established under FTA sponsorship in July 1992. 
Proposed by the U.S. Department of Transportation, TCRP was 
authorized as part of the Intermodal Surface Transportation 
Efficiency Act of 1991 (ISTEA). On May 13, 1992, a memorandum 
agreement outlining TCRP operating procedures was executed by the 
three cooperating organizations: FTA, the National Academies, acting 
through the Transportation Research Board (TRB); and 
the Transit Development Corporation, Inc. (TDC), a nonprofit 
educational and research organization established by APTA. TDC is 
responsible for forming the independent governing board, designated 
as the TCRP Oversight and Project Selection (TOPS) Committee. 

Research problem statements for TCRP are solicited periodically but 
may be submitted to TRB by anyone at any time. It is the responsibility 
of the TOPS Committee to formulate the research program by 
identifying the highest priority projects. As part of the evaluation, the 
TOPS Committee defines funding levels and expected products. 

Once selected, each project is assigned to an expert panel, appointed 
by the Transportation Research Board. The panels prepare project 
statements (requests for proposals), select contractors, and provide 
technical guidance and counsel throughout the life of the project. The 
process for developing research problem statements and selecting 
research agencies has been used by TRB in managing cooperative 
research programs since 1962. As in other TRB activities, TCRP project 
panels serve voluntarily without compensation. 

Because research cannot have the desired impact if products fail to 
reach the intended audience, special emphasis is placed on 
disseminating TCRP results to the intended end users of the research: 
transit agencies, service providers, and suppliers. TRB provides a series 
of research reports, syntheses of transit practice, and other supporting 
material developed by TCRP research. APTA will arrange for 
workshops, training aids, field visits, and other activities to ensure that 
results are implemented by urban and rural transit industry 
practitioners. 

The TCRP provides a forum where transit agencies can cooperatively 
address common operational problems. The TCRP results support and 
complement other ongoing transit research and training programs. 
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F O R E W O R D  

By S. A. Parker 
Staff Officer 
Transportation Research Board 

This report will be of interest to transit personnel responsible for planning, scheduling, 
and managing reliable bus transit services in congested areas. This report will also be useful 
to other members of technology procurement teams, representing operations, mainte­
nance, information systems, human resources, legal, finance, and training departments. 

In response to growing traffic congestion and passenger demands for more reliable ser­
vice, many transit operators are seeking to improve bus operations by investing in automatic 
vehicle location (AVL) technology. In addition, automatic passenger counters (APCs), 
which can collect passenger-activity data compatible with AVL operating data, are begin­
ning to reach the mainstream. Many operators are planning, implementing, or operating 
AVL-APC systems. The primary application of AVL technology has been in the area of real-
time operations monitoring and control; consequently, AVL data has not typically been 
stored or processed in a way that makes it suitable for subsequent, off-line analysis. In con­
trast, APC data is generally accessed for reporting and planning purposes long after oppor­
tunities for real-time use have expired. 

Beyond the area of real-time operations control, AVL technology holds substantial 
promise for improving service planning, scheduling, and performance analysis practices. 
These activities have historically been hampered by the high cost of collecting operating and 
passenger-activity data; however, AVL and APC systems can capture the large samples of 
operating data required for performance analysis and management at a fairly low incremen­
tal cost. Compared to real-time applications of AVL data, off-line analysis of archived data 
has different demands for accuracy, detail, and ability to integrate with other data sources. 
Operators and vendors need effective strategies for designing AVL-APC systems to capture 
and process data of a quality needed for off-line analysis, and for archiving and taking 
advantage of this promising data source. 

The objective of TCRP Project H-28 was to develop guidance for the effective collection 
and use of archived AVL-APC data to improve the performance and management of tran­
sit systems. This report offers guidance on five subjects: 

•	 Analyses that use AVL-APC data to improve management and performance 
•	 AVL-APC system design to facilitate the capture of data with the accuracy and detail needed 

for off-line data analysis 
•	 Data structures and analysis software for facilitating analysis of AVL-APC data 
•	 Screening, parsing, and balancing automatic passenger counts 
•	 Use of APC systems for estimating passenger-miles for National Transit Database reporting 



Tools for (1) analyzing running times and (2) designing scheduled running times using 
archived AVL and APC data were created as an extension of the existing software TriTAPT 
(Trip Time Analysis in Public Transport), a product of the Delft University of Technology. 
In addition, TriTAPT was used to demonstrate one of the advanced data structures recom­
mended, that of a “virtual route” consisting of multiple overlapping routes serving the same 
street. Under the terms of this project, TriTAPT is available without license fee to U.S. and 
Canadian transit agencies through 2009.

From the TRB website (http://www4.trb.org/trb/crp.nsf/All+Projects/TCRP+H-28), the 
following items can be accessed: (1) an electronic version of this report; (2) spreadsheet files 
with prototype analyses of passenger waiting time (using AVL data) and passenger crowd­
ing (using APC data); and (3) case studies (as appendixes to TCRP Web Document 23: Uses 
of Archived AVL-APC Data to Improve Transit Performance and Management: Review and 
Potential). 

http://www4.trb.org/trb/crp.nsf/All+Projects/TCRP+H-28
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S U M M A R Y  

Using Archived AVL-APC Data to Improve 
Transit Performance and Management 

Automatic vehicle location (AVL) and automatic passenger counter (APC) systems are capa­
ble of gathering an enormous quantity and variety of operational, spatial, and temporal data that, 
if captured, archived, and analyzed properly, holds substantial promise for improving transit 
performance by supporting improved management practices in areas such as service planning, 
scheduling, and service quality monitoring. Historically, however, such data has not been used 
to its full potential. Many AVL systems, designed primarily for real-time applications, fail to cap­
ture and/or archive data items that would be valuable for off-line analysis. And where good qual­
ity data is captured, new analysis tools are needed that take advantage of this resource. 

Recent technological advances have created new opportunities for improving the quantity, 
variety, and quality of data captured and for analyzing it in meaningful ways. The objective of 
this research was to develop guidance for the effective collection, archiving, and use of AVL-APC 
data to improve the performance and management of transit systems. 

This project yielded three types of products: a survey of practice, guidance on AVL-APC sys­
tems and data analysis, and prototype tools for analysis of archived AVL-APC data. The state of 
the practice in AVL-APC data capture and analysis was ascertained by means of literature review, 
widespread telephone interviews, intensive case studies of nine transit agencies in three coun­
tries, and a workshop for suppliers. The case studies (published as TCRP Web Document 23) are 
from five transit agencies in the United States (Seattle [WA], Portland [OR], Chicago [IL], New 
Jersey, and Minneapolis [MN]); two agencies in Canada (Ottawa, Montreal); and two agencies 
in the Netherlands (The Hague and Eindhoven). 

This report offers guidance on five subjects: 

•	 Analyses that can use AVL-APC data to improve management and performance 
•	 AVL-APC system design that facilitates the capture of data with the accuracy and detail needed 

for off-line data analysis 
•	 Data structures and analysis software for facilitating analysis of AVL-APC data 
•	 Screening, parsing, and balancing automatic passenger counts 
•	 Use of APC systems for estimating passenger-miles for National Transit Database (NTD) 

reporting 

The tools developed for analyzing AVL and APC data are described in this report; in addition, 
provision has been made for their distribution. Prototype analyses of passenger waiting time (using 
AVL data) and passenger crowding (using APC data), developed on a spreadsheet platform, 
are available from the project description web page for TCRP Project H-28 on the TRB website 
(www.trb.org). Tools for analyzing running times and designing scheduled running times were cre­
ated as an extension of the already existing software TriTAPT (Trip Time Analysis in Public Trans­
port), a product of the Delft University of Technology. TriTAPT was also used to demonstrate one 
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of the advanced data structures recommended, that of a “virtual route”consisting of multiple over­
lapping routes serving the same street. Under the terms of this project, TriTAPT is available with­
out license fee to U.S. and Canadian transit agencies for 4 years. 

AVL and APC System Design 

For their primary use, AVL systems include a reliable means of location and APC systems 
include sensors and algorithms that count passengers entering and exiting. However, archived 
data analysis requires data beyond what is needed for the primary purpose of AVL system design, 
real-time monitoring. 

Most important for archived data analysis is the ability to match raw location data to a base 
map and schedule. Inability to match data is the primary cause for rejecting data from database 
archives; data recovery rates as poor as 25% to 75% have been reported for APCs, although rates 
are generally far better for AVL. Success in matching depends to a large extent on the data cap­
tured. If the AVL system is integrated with a radio, operator sign-in including route-run num­
ber can be captured, which aids matching. Systems that detect door openings and correlate them 
with stops have an advantage over those without door sensors, because stops are natural match 
points. The most difficult part of matching is correctly identifying the end of the line, because 
vehicle behavior at the end of a line is less predictable. Better matching algorithms are needed 
especially for end-of-line detection. With detailed information about vehicle movements and 
door openings in the terminal area, algorithms can better determine when a bus arrives at the 
end of a line and when a bus begins a trip. 

AVL systems produce three kinds of frequent records: polling records, stop records, and time-
point records. Polling records indicate a bus’s location when queried by a central computer doing 
round-robin polling. Polling is intended mainly for real-time knowledge of vehicle location; its 
records can be called “location-at-time” data as opposed to stop and timepoint records, which 
are “time-at-location” data. Most analyses of AVL-APC data need time at specific locations, for 
example, to analyze running time or schedule adherence. While estimation of time-at-location 
is possible by interpolation from polling data, it has so far proven impractical. Polling data’s only 
value for off-line analysis is for incident investigation, using “playback.” 

Stop and timepoint records include the time at which the bus departed and/or arrived at spec­
ified points. Different system designs define the time being recorded differently; for example, 
arrival time may be when the bus enters within a zone of a 10-m radius about a stop or when the 
first door opens (or the bus passes the stop if the door is not opened). Door switch and odome­
ter connections enable more precise sensing of arrival and departure times, improving data accu­
racy. Because some analyses use arrival time while others use departure time, recording both 
increases the usefulness of the data archive. 

Stop records offer greater geographic detail than timepoint records. On buses with APC, records 
are always made at the stop level; with AVL, timepoint records are more common. However, there 
are advantages to making stop records even when there are no passenger counts. The advantages 
include the ability to detect holding (i.e., a bus remaining at a stop with doors closed or with doors 
open but for an unusually long time, as when a bus is ahead of schedule); geographic detail for ana­
lyzing delays; and the ability to make stop-level schedules, whether for publishing, for computer-
based trip planners, or for next bus arrival prediction systems. 

AVL-APC systems also make types of records other than these basic, frequent records. Radio-
based systems create event records, sometimes for more than 100 event types, all stamped with 
time and location. They can include events that are generated automatically (e.g., engine turned 
on or off) and events that are operator initiated and sent by data radio (e.g., pass-up, railroad 
crossing delay). Event records useful for data analysis include pass-ups, various types of delay 
(e.g., drawbridge, railroad crossing), indications of special user types (e.g., wheelchair lift users, 
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bicycle rack users), and events that help with matching the trip. If the on-board computer 
monitors bus speed and heading, records can be written for noteworthy changes (e.g., when 
speed crosses a crawl speed threshold) or for the maximum speed achieved between stops. 

AVL systems can also be configured to make records very frequently (e.g., every 2 s). That kind 
of data is helpful for mapping trajectories and for capturing speed-related details. 

AVL systems have two options for data recording: (1) via an on-board computer that is 
uploaded nightly, usually using an automated, high-speed link, or (2) via real-time radio trans­
mission, with records stored in the receiving computer. Because data radio has limited trans­
mission capacity, this mode limits the frequency (and to a lesser extent, length) of records that 
can be made. On-board storage, in contrast, presents no practical capacity limitation and is there­
fore inherently better suited to data collection. 

On-board devices that can be integrated with an AVL system include APCs, radio control head, 
odometer (transmission), gyroscope, door sensors, wheelchair lift sensor, farebox, and stop 
enunciator. In general, the more devices included, the richer the data stream, which can aid both 
in matching and in offering new kinds of information. Integration with the radio control head 
enables the system to record operator-initiated messages as events and to capture valuable sign-
in information. Integration with the odometer provides a backup to the geographic positioning 
system (GPS) and information on speed and can be used to detect when a bus starts and stops 
moving, which aids in determining arrival and departure times and delay between stops. Door 
sensors are valuable for detecting arrival and departure times at stops, as well as for matching. 
Integration with a newer farebox or other fare collection system that makes transaction records 
offers the possibility of getting location-stamped farebox records, which can be a valuable source 
of ridership data, especially where APCs are lacking. 

Integration with a stop announcement system does not add any new data to the system, but 
because stop announcements demand careful matching, it helps ensure that the location and 
matching system has high reliability. Likewise, integration with real-time radio offers the possibil­
ity of detecting and correcting, with operator or dispatcher assistance, errors such as invalid sign-
in information (e.g., a run number that does not agree with where a bus is found to be operating). 

Analyses Using Archived AVL-APC Data 

A large number of uses for archived AVL-APC data were identified, and their various needs 
for record type and data detail were analyzed. 

Targeted investigations apply to passenger complaints, legal claims, and payroll disputes, among 
others. They require only the ability to, in effect, play back a bus’s trajectory and, therefore, can be 
done with polling data. The greater the detail of the data stream, including the frequency of 
records, the more its potential uses for targeted investigations. 

One of the richest application areas for archived AVL data is in running time analysis, includ­
ing designing scheduled running times and monitoring schedule adherence. Traditional schedul­
ing methods, created in an era of expensive manual data collection, are based on mean observed 
running times, which are estimated from small sample sizes. Now, however, AVL data offers the 
possibility of using extreme values such as 85- and 95-percentile running times as a basis for 
scheduling. Extreme values are important to passengers, who care less about mean schedule 
deviation than about avoiding extreme deviations such as buses that are early or very late. Extreme 
values are also important to planning, because a goal of cycle time selection (sum of scheduled run­
ning time and scheduled layover) is to limit the probability that a bus finishes one trip so late that 
its next trip starts late. For transit agencies that use holding to prevent early departures, data analy­
sis can try to identify holding time, allowing the analysis of net running time for making sched­
ules. Most running time analyses can be performed with timepoint-level data, but there are 
advantages to using stop records, as mentioned earlier. 
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As transit agencies take a more active role in improving operating speed and protecting their 
routes from congestion, analyses of speed and delay along a route become valuable tools. There­
fore, stop-level detail is important for determining where delays are occurring and monitoring 
the effects of local changes to traffic conditions. 

AVL data also can be applied to schedule adherence, headway regularity, and passenger waiting time. 
In this arena, too, extreme values are at least as important as mean values. Also, because extreme val­
ues can only be estimated reliably from a large sample size, the availability of archived AVL data offers 
new opportunities for analysis. In particular, transit agencies are looking for measures of service 
quality that reflect passengers’ experience and viewpoint. Tools developed by this project for 
measuring waiting time, service reliability impacts, and crowding demonstrate this possibility. 

APC data lends itself to a variety of passenger demand analyses including determining load pro­
files and using demand rates to set headways and departure times. While traditional analyses rely on 
mean values, APC data also offers the possibility of focusing on extreme values of crowding, as well 
as relatively rare events such as wheelchair lift and bicycle rack use. 

AVL data containing stop records can be used to verify and update base maps. By analyzing 
where buses actually stop, one can update stop locations. Some AVL systems deliberately include 
a “learning mode” in which bus location is recorded frequently enough to give the bus’s path 
where route information is needed for the base map, such as through a shopping center or a new 
subdivision. 

Exploring archived AVL-APC data can enable transit agencies to find hidden trends that help 
explain irregularities in operations and suggest new avenues for improvement. As an example, 
one agency found that a surprising amount of schedule deviation could be explained by the 
operator—that is, some operators consistently depart late or run slow—which suggests the need 
for improved methods of operator training and supervision. 

An example of an advanced analysis using a highly detailed AVL data stream is calculating and 
monitoring measures of ride smoothness. A smooth ride is certainly important to passengers, 
and AVL data with either very frequent observations or accelerometers can allow ride smooth­
ness to be measured objectively. 

For any of the detailed analyses mentioned, there is also interest in higher level analysis involv­
ing tracking trends over time, comparing routes or periods of time, and so forth. Another exam­
ple is geographic information system (GIS)-based analyses that take as input passenger use and 
service quality statistics. 

Prototype Analysis Tools: Waiting Time and Crowding 

Analysis tools were developed for passenger waiting time on short- and long-headway serv­
ices, for crowding, and for designing scheduled running time. The tools developed for waiting 
time analysis use some newly proposed measures that reflect the amount of time passengers 
budget for waiting, which is particularly sensitive to service reliability. These proposed measures 
are based on extreme values of the headway and schedule deviation distribution, which can only 
be estimated using the large sample sizes that AVL datasets provide. 

For short-headway service, for which passengers can be assumed to arrive independent of 
the schedule, the distribution of passenger waiting time can be determined from headway data. 
The tools developed include graphing the distribution of waiting time, determining mean and 
95-percentile waiting time, and determining the percentage of passengers whose waiting time 
falls into various user-defined ranges. The latter is useful for supporting a service quality stan­
dard such as “no more than 5% of passengers should have to wait more than 2 minutes longer 
than the scheduled headway.” 

For short-headway service, “budgeted waiting time” is taken to be the 95-percentile waiting 
time. The difference between budgeted waiting time and the mean time passengers actually spend 
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waiting is called “potential waiting time.” While potential waiting time is not spent waiting on 
the platform, it still involves a real cost to passengers. “Equivalent waiting time” is a proposed 
measure of passenger waiting cost, being a weighted sum of platform waiting time (with proposed 
weight = 1) and potential waiting time (with proposed weight = 0.5). Example analyses and reports 
illustrate the concept and show how improved headway regularity reduces passenger waiting cost. 

Waiting time and its components also can be divided between a part that is “ideal” (i.e., what 
it would be if service exactly followed the schedule) and the remainder (“excess” waiting time). 
This division separates the effects of planning and operations on passenger waiting. 

For long-headway service, excess platform waiting time is defined as the difference between the 
mean and the 2-percentile departure deviation, based on the idea that experienced passengers 
will arrive early enough to limit to 2% or less their probability of missing the bus. Potential wait­
ing time is the difference between the 95-percentile and mean departure deviation, and excess 
equivalent waiting time is a weighted sum of these components. Example analyses and reports show 
how these waiting time measures are sensitive to improvements in service reliability (in this case, 
on-time performance). 

Traditional measures of crowding are mean maximum load and the percentage of trips in vari­
ous crowding ranges. Neither reflects well the impact of crowding on passengers. With APC data, 
it is possible to determine the number of passengers experiencing various levels of crowding rang­
ing from “seated next to an unoccupied seat” to “standing at an unacceptable level of crowding.” 

The analysis tools used for waiting time and crowding are included on a spreadsheet platform 
on the project description web page for TCRP Project H-28 on the TRB website (www.trb.org). 

Prototype Analysis Tools: Scheduled Running Time 

Analysis tools were also developed for running time. One is an interactive tool for determining 
scheduled running times (allowed times) across the day, including selecting boundaries between 
periods of homogeneous running times. This tool includes an automated portion, in which 
boundaries and allowed times are selected based on user-supplied criteria regarding feasibility 
(probability that trips can be completed in their allowed time) and tolerance. On a graphical inter­
face, users can modify both period boundaries and allowed times by simple drag-and-drop; the 
program will respond immediately with the feasibility of the proposed changes. 

The second main tool is for allocating running time along the route, thereby determining run­
ning time on each segment. It uses the Passing Moments method of maintaining a given proba­
bility of completing a trip on time, in order to give operators an incentive to hold when they are 
ahead of schedule, thus improving schedule adherence. 

The analysis tools for running time are part of the TriTAPT package, which is being distrib­
uted without license fee to U.S. and Canadian transit agencies as part of this project. 

Processing and Using Automatic Passenger Counts 

Accuracy of passenger counts is always a concern with automated systems. Analysis of the var­
ious dimensions of accuracy confirmed theoretical findings with published findings of APC data 
accuracy. The report shows that systematic under- or overcounting is a more serious problem 
than random errors, because of the large sample size afforded by APCs. The accuracy of load and 
passenger-miles measures can be substantially worse than the accuracy of on and off counts 
because of the way load calculations allow errors to accumulate. 

Getting accurate load and passenger-miles estimates from automatic passenger counts 
demands not only relatively accurate counts, but also good methods of parsing the data into trips 
and balancing on-off discrepancies. Therefore, checking the accuracy of APC-measured load 
against manual counts is a good system test. 
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To prevent drift in load estimates, a day’s data stream of automated counts has to be parsed 
at points of known load. Those points are usually layover points; therefore, parsing usually 
means dividing the data into trips. This need requires the end of the line to be clearly defined 
for APC systems. 

Failing to parse data at the trip level can bias load and passenger-miles estimates upwards 
because downward errors cause negative loads, which are routinely corrected when any trip’s 
data is processed, while upward errors are not readily apparent except at the block (vehicle 
assignment) level. 

Where load does not necessarily become zero at the end of a trip, whether due to a route end­
ing in a loop or to through-routing, data structures must account for passengers inherited from a 
previous trip, either by adding dummy stop records or using a field in a trip header record. 

Algorithms are presented for parsing data for trips that end with short loops, making the 
assumptions that (1) nobody rides all the way around the loop and (2) nobody’s trip lies entirely 
within the loop. Within the loop, passengers alighting are attributed to the trip entering the loop, 
and passengers boarding are attributed to the trip leaving the loop. With these assumptions, ons 
and offs can be balanced just as if load were known to be zero at the end of the trip, even if actual 
load on the bus never goes to zero. If a stop within the loop is designated as the route endpoint, 
inherited passengers can be determined at that point. 

An algorithm for balancing ons and offs at the trip level is presented. It includes calculation of 
the most likely value of total ons and offs, proportional corrections to stop-level counts, and 
rounding to integer values. It accounts for inherited passengers and checks not only against neg­
ative departing load, but also against negative through load, which is often a tighter condition. It 
also makes a first attempt to account for operator movements off and on the bus. 

Because APCs are normally deployed on only a percentage of the fleet that is rotated around 
the system, sample size can vary substantially between routes and trips. Data analysis using APC 
data should account for varying sample size, weighting not each observation, but each operated 
trip, equally. Most uses of passenger counts require only moderate sample sizes, which can be 
met with the typical 10% to 15% fleet penetration. The only exception is monitoring crowding 
levels on crowded routes; because of the importance of estimating extreme values of crowding, 
that application requires a large sample size. 

For NTD reporting, estimates of passenger-miles made from APC data can easily meet the spec­
ified accuracy level, provided systematic under- or overcounts are limited. The report shows the 
relationship between required sample size and bias and shows that, for all but the smallest transit 
systems, NTD accuracy can be obtained even if only a small percentage of the fleet is instrumented 
with APCs. 

Data Structures That Facilitate Analysis 

Many analyses are tied to a route pattern, that is, a sequence of stops. Examples are load pro­
files, headway irregularity, and running time. For such analyses, the basic unit is the stop or time-
point record. Data structures are needed to indicate the sequence of stops and the schedule. 

When the data stream includes information on events that happened on segments between 
stops or timepoints, that information can be used in a pattern-based analysis only if it can be 
associated with a stop or timepoint. One approach is to include a summary of segment infor­
mation (e.g., total delay on the segment or maximum speed on the segment) in fields in the stop 
or timepoint records. An alternative and more flexible approach is to include in each event record 
a field for the stop with which it can be associated. 

Header records for trips, blocks, and days can speed analysis by allowing selection filters to 
be applied to a much smaller number of records. Making summary records at the trip level— 
containing such summary measures for a trip as total ons and offs, maximum load, passenger­
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miles, and running time—will speed analysis of the standard measures that are summarized. 
Summary records also can be created over standard date ranges (e.g., every month or quarter) 
for higher level analysis, such as trends or historical comparisons. However, some agencies find 
that their database systems are able to generate summaries on the fly quickly enough that sum­
mary records are not needed. 

Transit agencies often want analyses to cover multiple route patterns (e.g., all the patterns that 
compose a line or all the patterns operating along a certain corridor or in a certain geographic 
area). If the analysis does not relate to a particular sequence of stops, the data can be analyzed by 
simple aggregation; for example, total boardings or total number of early departures can simply 
be aggregated over any group of stops. However, an analysis that involves relating the data to a 
sequence of stops used by multiple patterns—such as running time, headway, and load on a 
trunk—requires a data structure specifying the sequence of stops. A data structure called a “vir­
tual route” was developed and implemented in TriTAPT as a proof of concept. It allows users to 
do almost any analysis on all the patterns that serve, in part or whole, a given sequence of stops. 

The development of software tools for analyzing AVL-APC data is still in its infancy. There 
are advantages both to solutions customized by or for individual transit agencies and to solu­
tions that are common to multiple transit agencies. Customized solutions have worked well 
for some transit agencies, but require a level of database programming expertise unavailable 
to many transit agencies. Market mechanisms for shared solutions—which offer the possibil­
ity of greater expertise, economy, and continual upgrading (a necessity with today’s informa­
tion technology)—include AVL and APC equipment suppliers, scheduling software suppliers, 
and third-party software suppliers. 

Ideally, externally supplied software should be modular with respect to the native data format 
and ultimate report formats. It should provide an open interface for data input, so that it is not 
restricted to a single type of data collection system. While it may be programmed to deliver vari­
ous types of reports, it also should offer the possibility of exporting tables as a result of its analysis, 
giving agencies the freedom to format as they wish. In addition, transit agencies should always 
maintain the freedom to manipulate and explore their archived data beyond the tools provided by 
any externally supplied software. 
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C H A P T E R  1  

Introduction


AVL and APC systems are capable of gathering an enormous 
quantity and variety of operational, spatial, and temporal data 
that—if captured, archived, and analyzed properly—hold sub­
stantial promise for improving transit performance by sup­
porting improved management practices in areas such as 
service planning, scheduling, and service quality monitoring. 
Historically, however, such data has not been used to its full 
potential. Many AVL systems, designed primarily for real-time 
applications, fail to capture and/or archive data items that 
would be valuable for off-line analysis. Recent technological 
advances have created new opportunities for improving the 
quantity, variety, and quality of captured and archived data and 
for analyzing it in meaningful ways. The objective of this 
research was to develop guidance for the effective collection, 
archiving, and use of AVL-APC data to improve the perform­
ance and management of transit systems. 

Automatically collected data can play two important roles 
in a transit agency’s service quality improvement process. As 
illustrated in Figure 1, there are two quality improvement 
cycles: one in real time and one off line. In the real-time loop, 
automatically collected data drives operational control, aid­
ing the transit agency in detecting and responding to devia­
tions from the operational plan; it is also a source of real-time 
information that can be conveyed to customers using a vari­
ety of media. In the off-line loop, automatically collected data 
that has been archived drives analyses that aid the transit 
agency in evaluating and improving its operational plan. Ulti­
mately, good operational performance and high passenger 
satisfaction follow from having both a good operational plan 
and good operational control. 

1.1 Historical Background 

Historically, AVL system design has emphasized the real-
time loop, giving little or no attention to the off-line loop. 
Many AVL systems do not archive data in a manner useful for 
off-line analysis because they were not designed to do so. The 

inability of AVL to deliver data for off-line planning analy­
sis was a major theme of a 1988 conference sponsored by 
the Canadian Urban Transit Association [see, for example, 
Furth (1)]. Through the mid-1990s, this situation continued. 
A report summarizing data analysis practice in 1998 found 
that, of the seven U.S. transit agencies surveyed that had AVL 
systems, all relied entirely on manual data collection for run­
ning time analysis, and only three used AVL data to monitor 
schedule adherence (2). 

Broward County Transit illustrates how AVL systems are 
not commonly oriented toward archiving data (3). Its AVL 
system archived incident messages, but not routine poll data, 
which gave vehicle location approximately every 60 s. Because 
incident messages occur only on an exception basis, they can­
not support most running time and schedule adherence 
analyses. Although the poll messages were written to an Ora­
cle database as a utility for system maintainers, it was over­
written every 2 min because no permanent use for that data 
was foreseen. To archive the poll data, an analyst wrote a pro­
gram that copies the contents of the Oracle database to a per­
manent database every 2 min. This archive enabled him to 
plot trajectories and review particular trips. 

Because real-time data needs differ from those of off-line 
analysis, simply warehousing AVL records does not in itself 
guarantee a useful data archive. The single greatest problem 
with traditional AVL data is that it consists mostly of poll 
records, in which a vehicle reports its location when polled by 
a central computer in round-robin fashion, every 60 seconds or 
so. Poll data can be characterized as “location-at-time” data, as 
distinct from “time-at-location” data such as reporting when a 
bus arrives at a stop. Either one is adequate for tracking a bus’s 
location in real time, but most off-line analyses (e.g., running 
time, headway, or schedule adherence) need records of when 
buses arrive or depart from stops and timepoints. 

There are other important differences between real-time 
and archived data needs. Some AVL systems transmit data only 
when a bus’s schedule deviation is outside a “normal” range 
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Figure 1. Service quality improvement cycles. 

(e.g., 0 to 3 min late). For real-time control, or even passenger 
information, exception data like this may be adequate; how­
ever, a data stream containing only exception data is entirely 
unsuitable for analyzing running time. Another difference is 
that real-time data is more tolerant of errors. If faults in either 
the location system or the base map make a bus’s apparent track 
momentarily jump a few miles off route, service controllers 
learn quickly how to ignore such anomalies; however, in a data 
archive, such errors may go undetected and distort running 
time or schedule deviation analyses. 

APC systems, unlike AVL, have always been oriented 
toward off-line analysis. Historically, APC systems were inde­
pendent of (real-time) AVL systems. Their adoption has been 
far more limited than AVL systems. The weaker market for 
APCs has resulted in several vendors having gone out of busi­
ness and has limited the amount of vendor-developed soft­
ware for data analysis. (That trend, fortunately, is being 
reversed as technology advances.) Transit agencies have been 
largely left on their own to develop their APC systems; pio­
neering successes include transit systems in Seattle, Ottawa, 
Winnipeg, and Toronto. 

A radical shift in AVL system development in favor of 
archived data collection occurred in the mid-1990s, when Tri-
Met, together with an AVL vendor, designed a hybrid AVL-APC 
system featuring on-board event recording and radio-based 
communication. Records for every stop and other events are 
created in the on-board computer, while messages useful for 
real-time monitoring (e.g., bus is late or off-route) are radioed 
in. Another innovation was that APCs, installed on a sample of 
the fleet, do not have their own location system; they simply 
count passengers and rely on the AVL system to provide the 
location stamp. This design lowered the marginal cost of instru­
menting buses with APCs to the point that all new buses at Tri-
Met now have APCs. With 65% of the fleet equipped, Tri-Met 
stands out as the only agency with more than 20% of its fleet 
APC-equipped. After a few years’ break-in period, Tri-Met 

enjoys a comprehensive archive of high-quality location data, 
making it a leader in archived AVL-APC data analysis. 

NJ Transit took a still more radical step in designing, in con­
junction with an AVL vendor, an AVL-APC system that, for the 
time being at least, does not include real-time radio communi­
cation. Although they envision integrating radio in the future, 
the current configuration is strictly for off-line analysis. 

In the Netherlands, AVL systems with on-board data 
recording were installed in some cities in the early 1990s. 
However, the lack of analysis tools and poor quality of base 
maps led to their data being largely unused until about 1996, 
when the Delft University of Technology teamed up with the 
municipality of Eindhoven and its transit operator, Hermes, 
to improve their data quality and develop and apply analysis 
tools. Those tools, originally developed around 1980 for use 
with manually collected data, were coded into the software 
package TriTAPT (Trip Time Analysis in Public Transport), 
which has also been applied at transit agencies of the Hague, 
Rotterdam, and Utrecht. 

A significant recent development for archived AVL-APC 
data is the growing demand for stop announcement systems, 
which require considerable on-board computing power to 
match stops in real time. The creators of those systems found it 
easy to simply add data recording, creating a new function for 
their product and thus creating a new source of archived AVL 
data—one that promises to be very accurate by virtue of being 
designed for a rather demanding application. In the system 
installed in the Chicago Transit Authority (CTA), APCs have 
also been integrated on a sample of the fleet. 

The movement to integrate systems and on-board devices 
is serving to blur the distinction between what first appeared 
as stand-alone systems. In recent years, for example, some 
cities, including Minneapolis, have integrated APCs into 
real-time AVL systems, with stop data transmitted over the air 
to a central computer for archiving. APC and event record­
ing has been added to stop announcement systems, and stop 
announcements have been added to real-time AVL systems. 
However, regardless of what functions a data collection system 
may have, there are common needs for archived data analysis. 
Therefore, this report will sometimes use the term AVL in a 
generic sense, meaning any automatic data collection system 
that includes location data. 

1.2 Research Objective 

Technological advances erase all question of the feasibility 
of collecting and archiving high-quality location data. Two 
primary issues remain: 

•	 How should automatic data collection systems and their 
associated databases and software be designed so that they 
capture and facilitate the analysis of AVL-APC data? 
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•	 What new analysis tools might become possible using this 
kind of archived data? 

1.3 Research Approach 

The research followed three major thrusts, described in this 
section: 

•	 Survey of industry practice 
•	 Analysis of data systems and opportunities 
•	 Development of analysis tools 

1.3.1 Survey of Practice: Breadth and Depth 

Six information sources were used to review (1) AVL, APC, 
and related systems with respect to their ability to capture and 
archive operational data and (2) industry practice in using 
such archived data. Together, these sources provide both a 
broad view of historical and current practice and an in-depth 
view of practice at transit agencies in the United States, 
Canada, and Europe. 

The first source was the literature on intelligent systems in 
transit and on transit analysis tools. A helpful starting point 
was a pair of state-of-practice reviews done for the U.S.DOT’s 
Volpe Center (4, 5). 

A second source was a mail survey of U.S. transit agencies 
concerning their use of AVL and APC systems conducted in 
Spring 2001 by Robbie Bain. 

A third source was a wide telephone survey of APC and AVL 
users. From the first two sources, the researchers assembled a 
preliminary list of some 122 U.S., 14 Canadian, and 26 Euro­
pean transit agencies using or planning to use AVL or APC sys­
tems. From that list, staff members were telephoned at transit 
agencies reputed to be advanced in their use of AVL or APC 
data. Telephone interviews were successfully conducted with 
the 20 U.S. and 14 Canadian transit agencies listed in Table 1. 

The fourth source was in-depth case studies at nine transit 
agencies in the United States, Canada, and the Netherlands, 
listed in Table 2. Appendixes A through I of TCRP Web Doc­
ument 23 (available from the TRB website: www.trb.org) con­
tain the case study reports. In addition, a partial case study 
was conducted of Uestra, the transit agency in Hannover, 
Germany. 

The nine case study agencies provide a broad range in 
many respects. They represent the United States, Canada, and 
Europe. Within the United States, they span the East Coast, 
Midwest, and West Coast and include agencies whose oper­
ations are statewide, metropolitan, and limited primarily to 
a central city. Some have focused on AVL; others on APCs; 
others on event recorders; and some on two or more of 
these functions. They represent a range of vendors, system 
design, and system age. Some of the selected agencies have 

Table 1. Agencies interviewed in wide 
telephone survey. 

State/ City / Area Agency 
Province  

CA San Jose Valley Transportation 
Authority 

CO Denver Regional Transportation 
District 

FL Broward County Broward County Transit 

FL Orlando LYNX 

IA Des Moines Metropolitan Transit Authority 

IA Sioux City Sioux City Transit 

IL Chicago CTA 

IL Chicago suburbs Pace 

MA Cape Cod Cape Code Regional Transit 
Authority 

MD Baltimore / state Maryland Transit 
Administration 

MI Ann Arbor Ann Arbor Transportation 
Authority 

MN Minneapolis Metro Transit 

MO Kansas City Kansas City Area 
Transportation Authority 

NJ New Jersey (statewide) NJ Transit 

NY Buffalo Niagara Frontier 
Transportation Authority 

OR Portland Tri-Met 

TX Dallas Dallas Area Rapid Transit 

TX San Antonio VIA 

WA Seattle King County Metro 

WI Milwaukee Milwaukee County Transit 

AB Calgary Calgary Transit 

AB Edmonton Edmonton Transit 

BC Vancouver TransLink 

BC Victoria BC Transit 

MB Winnipeg Winnipeg Transit 

NS Halifax Halifax Metro Transit 

ON Hamilton Hamilton Street Railway 

ON London London Transport 
Commission 

ON Ottawa OC Transpo 

ON Toronto Toronto Transit Commission 

QC Hull Société de transport de 
l’Outaouais 

QC Montreal STM 

QC Montreal South Shore Société de Transport de la 
Rive Sud de Montreal 

QC Quebec Société de transport de la 
Communauté urbaine de 
Quebec 

well-established practice with archived data, with impacts 
throughout the organization; others are still in the devel­
opment stage. These agencies have had failures as well as 
successes, and lessons are learned from both. 

A brief description of the AVL-APC systems at the case 
study sites will provide some helpful background. 
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Table 2. Case study sites. 

Location 	Agency Appendix 

Portland, OR Tri-Met A 

New Jersey (statewide) NJ Transit B 

Seattle, WA King County Metro C 

Chicago, IL CTA D 

Montreal, QC STM E 

Ottawa, ON OC Transpo F 

Eindhoven, the Netherlands Hermes G 

The Hague, the Netherlands HTM H 

Minneapolis, MN Metro Transit I 

•	 Tri-Met’s system features on-board computers on all of 
their buses, connected by radio to provide real-time AVL, 
and stores on-board records for every stop as well as other 
events. APCs are on about 65% of the fleet. Stop records 
include on and off counts (void for buses without APCs), 
stop ID, longitude, latitude, door open moment, dwell 
(i.e., door open) duration, moment of exiting a 30-m radius 
zone around the stop, indicators of door opening and lift 
use, and maximum speed since the previous stop. Location 
and status are radioed to the control center on an exception 
basis (e.g., when more than a predetermined deviation from 
schedule occurs or when the bus is off route). Operator-
initiated coded radio messages (e.g.,“road blocked by train” 
or “pass-up”) are recorded in the on-board computer with 
time and location stamp as well as transmitted in real time. 
The on-board computer is also connected to a traffic signal 
priority request emitter, triggered only when the bus is 
behind schedule. 

•	 The HTM (the Hague) system is like Tri-Met’s, featuring 
on-board event recording at every stop, APCs on a frac­
tion of the fleet (in this case, about 25%), radio transmis­
sion of real-time location to central control, and traffic 
signal priority request emitters. 

•	 Eindhoven’s Hermes system is an event recorder, not con­
nected to the radio. Location is based on sub-pavement bea­
cons at each signalized intersection and odometer. Stop 
records include door opening and closing time. Records 
are also made of each time the bus passes a 5 km/h speed 
threshold, used to determine how much time is spent 
stopped or at crawl speed at different points on the route. 

•	 A stop announcement system currently being installed at 
the CTA stores stop records on board all buses. On buses 
with APCs (15% of the fleet), stop records include on and 
off counts. At the same time, an independent 1995-vintage 
AVL system polls buses for their location every 40 to 70 s. 
Although the poll messages are recorded, they are not 
matched to location and are therefore unsuitable for routine 
operations analysis. 

•	 At NJ Transit, an AVL vendor supplied the on-board com­
puter with location tracking function, even though NJ 
Transit’s system is not connected to a radio, and integrated 
it with APCs. Only a fraction of the fleet is instrumented; 
that fraction has been concentrated on one route to make 
operations analysis of that route possible. It features exten­
sive and frequent event recording, including stop records, 
and was designed to enable later integration with the radio 
and other devices through a J1708 network. 

•	 At Metro Transit, the AVL vendor supplied the on-board 
computer, which is connected to the radio and, on 12% of 
the fleet, to APCs. The radio carries both round-robin poll 
data (bus location when polled) for real-time monitoring 
and event messages. Off-line analysis will ignore the poll 
data except for incident investigations, and instead use event 
messages, including timepoint messages. Stop messages, 
including passenger counts, are not recorded on board, but 
are transmitted by radio whenever an APC-instrumented 
bus actually serves a stop. During periods of radio failure, 
event messages are recorded on board, uploaded at the end 
of the day, and inserted into the radio message database. 

•	 King County Metro has both AVL and APC systems that 
share signpost, odometer, clock, and operator login (route/ 
run) information, but are otherwise independent. The AVL 
system sends timepoint messages as well as performs round-
robin polling. Service analysts at King County Metro had 
long relied on APC records for operations analysis; however, 
because of improvements in timepoint detection made 
around 2000, AVL timepoint data is now the preferred data 
source, because AVL data is implemented fleetwide, offer­
ing large and recent data samples. 

•	 OC Transpo and Societé de Transport de Montréal (STM) 
have stand-alone APCs. OC Transpo is a long-time APC 
user and has used its APC system extensively for opera­
tions analysis as well as passenger count analysis. STM has 
recent in-depth experience in testing and approving new 
APC systems. 

The fifth source of information was a 1-day workshop for 
vendors held on May 28, 2002. An open invitation was 
extended to vendors of AVL, APC, and related products, with 
specific invitations sent to known vendors. They were joined 
by panel members, representatives of several of the case study 
sites, and members of the project team, providing a good rep­
resentation of interested transit agency staff and independent 
researchers. Participants other than project team members 
are listed in Table 3. The researchers also benefited from direct 
interaction with vendors referred by transit agency staff from 
the case study sites. 

Finally, the researchers used their knowledge of the transit 
industry and related industries, supplemented by informa­
tion received from members of the project panel. 
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Table 3. Vendor workshop participants. 

Type 	Participants 

Vendor 	 Dirk van Dijl, ACIS 
Representatives	 Alain de Chene, Infodev 

Carol Yates, Orbital 
George Mount, NextBus 
Andreas Rackebrandt, INIT 
Neil Odle, IRIS 
Anil Panaghat, US Holdings 
Vijay Raganath, consultant with

 Delaware Transit 
Hershang Pandya, US Holdings 
Rohit Patel, Intelect Corporation 
Mike Kushner, Logic Tree 

Panel Members, Jim Kemp, NJ Transit (panel chair) 
Liaisons, and Wei-Bin Zhang, Univ. of California
Additional PATH program 
Reviewers Fabian Cevallos, Broward County

 Transit 
Gerald Pachucki, Utah Transit Authority 
Tom Friedman, King County Metro 
Kimberly Slaughter, S.R. Beard 
Erin Mitchell, Metro Transit 
Yuko Nakanishi, Research and

 Consulting 
Sarah Clements, FTA 
Bob Casey, U.S.DOT Volpe Center 
Stephan Parker, TRB 
Eric Bruun, consultant 

Case Study Site Steve Callas, Tri-Met
Representatives Kevin O’Malley, CTA
(in addition to Michel Thérer, STM 
panel members Glenn Newman, NJ Transit 
already listed) 

1.3.2 Analysis of Data Systems 
and Opportunities 

The second thrust of the research was identifying actual and 
potential ways that archived AVL-APC data could be used and 
analyzing these identified ways in terms of needs for data cap­
ture, accuracy and sample size, data structures, and analysis 
methods. At the same time, data collection and database sys­
tem designs were analyzed in terms of their capability for sat­
isfying those needs. Based on that comparison, the researchers 
developed guidance regarding system design. 

Another part of this thrust was the development, as a proof 
of concept, of one innovative data structure for analyzing serv­
ice on a trunk shared by multiple patterns or lines. 

1.3.3 Development and Demonstration 
of Improved Tools 

If there is no good archived data, there appears to be no 
need to develop tools to analyze it. And if there are no useful 
tools to apply, there appears to be no need to purchase a sys­
tem to gather the data. Because of this chicken-and-egg rela­
tionship between analysis tools and the practice of capturing 
and archiving data, the third main thrust of this project was 
to develop and demonstrate the use of improved analysis 
tools that take advantage of archived AVL-APC data. 

This thrust, in its effort to accelerate the cycle of develop­
ment, had two facets: TriTAPT and improved analysis tools. 
Delft University’s software package TriTAPT contains analy­
sis tools related to running time and passenger counting. 
Under the terms of this project, this software will be available 
with no license fee for 4 years to transit agencies in the United 
States and Canada. In the course of the project, it was tested by 
three agencies (Tri-Met, Metro Transit, and the Massachusetts 
Bay Transportation Authority [MBTA]); and the feedback was 
used to help adapt it to U.S. practice. 

The second facet was the development of improved analy­
sis tools. Improved tools for running time analysis were 
developed within TriTAPT, while prototype tools for ana­
lyzing passenger waiting time and crowding were developed 
on a spreadsheet platform. 

1.4 Report Outline 

This chapter describes the historical background, the 
research objective, the research approach, and the case 
study sites. 

Chapters 2 and 3 review systems used to collect data. Chap­
ter 2 covers the core vehicle location system including on-
board computer and communication. Chapter 3 covers other 
on-board devices that can be part of a data collection system. 
These chapters analyze how the design of an AVL system 
affects the types and quality of data that it delivers. 

Chapter 4 reviews actual and potential uses of archived 
AVL-APC data, analyzing for each use the kind of AVL-APC 
data it requires. With the previous two chapters, it provides the 
logical progression from data use to data collection system 
(i.e., what kind of data is needed to perform a certain type of 
analysis and what kind of data collection system is needed to 
collect that data). 

Chapters 5 through 7 describe specific analysis tools that 
were developed in the course of this project: tools for analyzing 
running time, passenger waiting time, and passenger crowding. 

Chapters 8 and 9 focus on passenger count data. Chapter 8 
deals with schedule matching, trip parsing, and load bal­
ancing methods and includes some newly developed pars­
ing and balancing methods. Chapter 9 deals with sampling 
issues and, in particular, how APC data can be used to esti­
mate annual systemwide passenger-miles in order to satisfy 
NTD requirements. 

Chapters 10 and 11 offer guidance on the design of auto­
matic data collection systems (Chapter 10) and on the design of 
software used to store and analyze archived data (Chapter 11). 

Chapter 12 discusses organizational issues associated with 
AVL-APC data collection and archiving. Chapter 13 offers 
conclusions. 

Appendixes A through I, previously published as part of 
TCRP Web-Only Document 23, are case studies. 
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Part of this project was the development of software analy­
sis tools. Spreadsheet tools for analyzing passenger waiting time 
and crowding, described in Chapters 6 and 7, are available on 
the project description web page for TCRP Project H-28 on the 
TRB website (www.trb.org). TriTAPT, which contains a suite of 
analysis tools including running time analysis tools developed 
in this project, is available with no license fee to U.S. and Cana­
dian transit operators through the end of 2009. 
The conversion routines were developed for the native format
of input data used by those agencies that until now have used 
TriTAPT; agencies may have to adapt them to their particular 
input file formats. 

Other products of this project were three papers published 
in Transportation Research Record: Journal of the Transportation 
Research Board. 

•	 “Designing Automated Vehicle Location Systems for 
Archived Data Analysis” (6) contains material that is sum­
marized in Chapters 2, 3, 4, and 10. 

•	 “Making Automatic Passenger Counts Mainstream: Accu­
racy, Balancing Algorithms, and Data Structures” (7) con­
tains material that is reproduced in Chapters 8 and 9. 

•	 “Service Reliability and Hidden Waiting Time: Insights 
from AVL Data” (8) contains material that is covered in 
Chapter 6, as well as theoretical material that is not repeated 
in this report. 
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C H A P T E R  2  

Automatic Vehicle Location


TCRP Synthesis of Transit Practice 24: AVL Systems for Bus 
Transit provides an insightful description of AVL systems and 
a review of AVL’s history (9). Historically, AVL was developed 
for two real-time applications: emergency response and 
computer-aided dispatch (CAD). CAD represents a major 
advance in complexity, because it involves matching the 
observed operation to the schedule. AVL has long been adver­
tised as a means of obtaining data to be archived for off-line 
analysis as well. That promise, which has seen limited fulfill­
ment, is the focus of this report. 

2.1 Location Technology 

In the last decade, the U.S. government’s global positioning 
system (GPS) has become the preferred location technology. 
GPS receivers on vehicles determine their location by triangu­
lation based on signals received from orbiting satellites. Loca­
tion accuracy for buses is generally better than 10 m, depending 
on the accuracy of clocks in the GPS receivers and on whether 
differential corrections are used. 

Because GPS requires a line of sight to the satellites, GPS 
signals can be lost as buses pass through canyons, including 
man-made canyons caused by tall buildings. Tall buildings also 
reflect GPS signals, causing a phenomenon called multipath 
that can lead to erroneous location estimation. For example, on 
a GPS-driven map display, buses approaching Chicago’s Loop 
(downtown) appear to jump into Lake Michigan. In a system 
intended for real-time monitoring only, predictable errors 
such as this can be tolerated; however, for archived data 
intended for off-line analysis, errors like this pose a threat to 
data integrity. In tunnels and covered areas, GPS cannot be 
used unless repeaters are installed, as in NJ Transit’s Newark 
City Subway. 

Older AVL-APC systems, like King County Metro’s, use a 
combination of beacons, which serve as fixed-point location 
devices, and dead reckoning for determining location between 
beacons, using the assumption that the bus is following a 

(known) route. All transit coaches have electronic odometers, 
making it easy to integrate odometers into a location system. 
Route deviations present a problem for odometer-based dead 
reckoning, which is one of the reasons GPS is preferred. Some 
AVL systems include a gyroscope, which makes it possible to 
track a bus off-route using dead reckoning. 

Many GPS-based systems often use dead reckoning as a 
backup. When GPS signals indicate a change in location incon­
sistent with the odometer, dead reckoning takes over from the 
last reliable GPS measurement, until GPS and odometer meas­
urements come back into harmony. 

Odometers require calibration against known distances 
measured using signposts or GPS, because the relationship 
between axle rotations (what is actually measured) and dis­
tance covered depends on changeable factors such as tire 
inflation and wear. 

2.2 Route and Schedule Matching 

Matching a bus’s trajectory to route and schedule is impor­
tant for data analysis, as well as many real-time applications 
including CAD and real-time passenger information systems. 
The rate at which data is rejected for inability to match it to 
a route can be substantial, reaching 40% at agencies that were 
interviewed. Data matching was cited by many agencies as 
the single greatest challenge faced in making their AVL-APC 
data useful. 

Some very simple AVL systems perform no matching; they 
simply display on a map where the buses are. However, most 
transit AVL systems include CAD, which involves real-time 
matching to route and schedule. Because the most demand­
ing application in regards to matching is stop announcements 
(because matching errors are so apparent to the public), 
archived data derived from stop announcement systems should 
be of particularly high quality. 

In traditional APC systems, which lack a real-time compo­
nent such as CAD or stop announcements, data is matched 
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off line based on signpost, odometer, and/or GPS reading 
recorded during operation. 

Matching algorithms themselves tend to be proprietary, 
developed by AVL vendors or (for APC) developed in house. 
As a general rule, the more data available, and the greater its 
detail and accuracy, the better the matching accuracy is. 

2.2.1 Route/Run Data and Operator Sign-In 

Matching, whether in real time or off line, is more success­
ful when the algorithm doing the matching has prior knowl­
edge of the route and schedule the bus is supposed to be 
following. With the scheduled bus path known, real-time 
measurements are then used to verify and update the path. If 
door opening and closing sensors are part of the data collection 
system, each door opening/closing event suggests that a bus is 
at a stop, permitting a comparison between reported location 
and expected next stop location. 

In newer AVL systems, the schedule and base map infor­
mation used for matching are held in the on-board computer. 
Recognizing that schedules often change, many systems pro­
vide for schedule information to be uploaded daily. At King 
County Metro, where the older AVL system’s on-board com­
puters cannot hold the full schedule, buses are tracked against 
the schedule by the central computer; nevertheless, King 
County Metro devised and implemented a method for local, 
real-time matching. About 3 min of running time before each 
timepoint, the central computer radios to the bus a message 
indicating the odometer reading at which the coming time-
point will be located; local sensing and logic will then suffice 
to know when the bus has reached the next timepoint. This 
technique substantially improved King County Metro’s suc­
cess at matching timepoints. 

The main source of route/run data is operator sign-in. 
Sign-in to radio systems is routine in the transit industry, and 
non-compliance is generally limited to a small percentage of 
operators on any given day, because operators who do not sign 
in can be readily detected at the control center. At King County 
Metro, for example, operators who fail to sign in can be called 
out of service for having a faulty radio, and face possible dis­
cipline if the problem turns out to be simple failure to sign in. 
Therefore, AVL systems connected to the radio benefit from 
getting relatively good-quality sign-in data. 

The validity of sign-in data can also be a problem. Accu­
racy will be better if the system taking the sign-in accepts 
only valid codes for operator number, run number, and so 
on. Systems in which sign-in errors are not detected until 
off-line processing cannot benefit from operators correct­
ing their own input errors. As an example, farebox data sys­
tems often have very high rates of sign-in error, making 
boarding counts and revenue difficult for agencies to attrib­
ute to route (10). 

Data collection systems not tied to the radio, like traditional 
APC systems,present a challenge.Agencies are reluctant to force 
operators to sign in again to another system when they are 
already signing in to the radio, farebox, and destination sign; 
and, if sign-in is not necessary for any real-time operating func­
tion, compliance is sure to be an issue. King County Metro 
solved this problem by connecting its APCs to the radio control 
head, which transmits sign-in information to the (otherwise 
independent) APC on-board computer. 

Lacking sign-in data, NJ Transit’s APC/event recorder sys­
tem still tries to take advantage of the scheduled runs that 
buses follow by using a two-step matching procedure: (1) the 
route/run is inferred from pull-out, pull-in, and stop records 
and then (2) the inferred run is used for stop-level matching. 
If matching fails, the system may guess a different route/run. 

Metro Transit eases the burden on operators while improv­
ing accuracy by providing automated sign-in, communicated 
by wireless link during pull-out, based on vehicle-block assign­
ments made overnight. In its new AVL-APC system, operators 
are asked only to verify and correct their sign-in information. 

Houston Metro improves the accuracy of its route/run data 
by comparing sign-in data with payroll data as part of routine 
post-processing. A semi-automated procedure allows an ana­
lyst to make corrections if there seems to be a simple, cor­
rectable error, such as a miskeyed run code. 

2.2.2 Base Map Accuracy 

Without data matching as a driving application, transit 
agencies have little need historically for an accurate stop data­
base. Many agencies have no stop database, because they do 
not own the stops (i.e., the sidewalk space and signs) and 
because routes and schedules are detailed only to the time-
point level. Before AVL, stop databases only had to be accurate 
enough for operators and maintenance personnel to locate the 
stop. However, automatic applications do not forgive errors 
and omissions the way manual data collection can. Generally, 
agencies implementing AVL have needed to make a major 
effort to correct their stop location database. Some agencies 
and vendors have used dedicated crews to field map all stop 
locations using mobile GPS units. Buses themselves can be 
configured to be those mobile units. 

The 2002 case study of NJ Transit emphasizes the importance 
of having a good base. On patterns for which at least 90% of the 
reference locations are coded to within 300 feet of actual, NJ 
Transit’s matching algorithm was able to match 81% of the trips 
to a scheduled trip and pattern, in contrast to a 65% matching 
rate overall. Starting with a well-calibrated GIS base map based 
on aerial photography can reduce the burden of field mapping. 
Equally important is maintaining the stop location file for both 
temporary and permanent changes. Some large agencies report 
changing 5% of their 10,000 stops each year. 
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While AVL-APC systems need accurate bus stop locations, 
the location data that AVL-APC systems supply can also be 
used to improve the base map. One APC vendor recommends 
comparing average GPS coordinates at observations of a stop 
to its reference coordinates, updating the base map if the obser­
vations are consistent. 

One complicating factor is that different enterprise systems– 
scheduling, facilities, transportation, passenger information 
systems such as on-line trip planners, and traffic manage­
ment–use the term “bus stop” for different functions, leading 
to slightly varying definitions that often entail differing loca­
tions. A transit agency can have four or more definitions of 
stop location (11): 

•	 Intersection or landmark (e.g., Third and Main) 
•	 Intersection quadrant 
•	 Nominal coordinates along an ideal route, often following 

the roadway centerline 
•	 Coordinates of the point on the curb closest to the bus 

stop sign 

Additionally, the complication of determining coordinates, 
which may differ between location system and the base map, 
introduces a possible calibration problem. A recently pub­
lished U.S.DOT report on location referencing offers valuable 
guidance for making location accurate and consistent across 
data systems (12). 

2.2.3 Schedule Integration 

Thanks to the near-universal adoption of automated sched­
uling, route and schedule data is always imported from the 
scheduling system. The schedule database tends to be accurate 
and carefully maintained because of its critical role in opera­
tions and payroll. 

In large cities, transit schedules tend to be extremely 
dynamic, with route, vehicle, and operator schedules changing 
almost daily. It is therefore vital to the performance of AVL to 
have a mechanism for keeping the schedule up to date. Many 
AVL systems reload the entire schedule to bus on-board com­
puters daily at pull-out. 

Several transit agencies have reported difficulties in inte­
grating the schedule database with AVL, sometimes delaying a 
project for years. The desire for a standard interface was echoed 
by many transit agency and vendor representatives. Even 
though there are only two major schedule software suppliers, 
databases tend to be highly customized to each transit agency’s 
particular routing, schedule, and work rules practices; there­
fore, a standard interface, even for a single scheduling system 
vendor, can be elusive. 

In one case, the problem that had to be overcome was that 
the AVL vendor’s software expected that the schedule data­
base would have details concerning the path taken by buses 

during pull-ins, pull-outs, and deadheads, but the schedul­
ing system vendor’s database excluded those details. Another 
problem is that schedule databases define routes as a series of 
timepoints, not stops, while an AVL or APC system doing 
stop-level tracking sees a route as a sequence of stops. 

2.2.4 Control-Ordered Schedule Changes 

Route and schedule matching becomes complicated when 
buses do not exactly follow their assigned block. Examples 
are when a bus breaks down, when buses are short-turned or 
inserted into the schedule to try to balance headways, or 
when buses swap duties. In such cases, capturing informa­
tion about schedule changes ordered by dispatchers can ease 
the task of matching. 

If the change is simply that a bus assumes a new block or run, 
that information can be captured through (a fresh) sign-in. 
Otherwise, to the researchers’ knowledge, no method has yet 
been developed for capturing control-ordered schedule changes 
in a form suitable for automated processing. At King County 
Metro, for example, the AVL/radio database includes con­
troller logs indicating changes to bus and operator assignments; 
however, those records need to be interpreted manually. 

2.2.5 End-of-Line Identification 

End-of-line operations can be both complex and unpre­
dictable, making a trip’s start and end times difficult to identify. 
One reason such identification is difficult is that terminals are 
often located where GPS accuracy is worst—near tall down­
town buildings or in a covered terminal. 

A second reason is the unpredictability of operations at 
route ends. Operators approaching the end of the line with an 
empty bus may feel free to deviate from the prescribed route 
(e.g., to stop at a sandwich shop, thereby spending their layover 
at a different location). At the terminal, an operator getting in 
and out to adjust a mirror can be mistaken as passengers getting 
off and on and a stop being served. Operators may open and 
close doors several times to let passengers board during layover 
periods, which makes door closing an inadequate criterion for 
inferring departure from the stop. A vehicle jockeying for posi­
tion in a layover area may be mistaken for an early departure. 

For these reasons, several agencies report treating first and 
last segment running time data with some skepticism. Some 
agencies simply exclude first and last segments from running 
time analysis, forcing them to assume a fixed running time on 
those extreme segments. Not being able to track operations 
from the start to the end of a line compromises the integrity 
of route-level running time analyses such as determining 
periods of homogeneous running time and the sufficiency of 
recovery time. 

Agencies have used various means to improve end-of-line 
identification. King County Metro made its tracking algorithm 
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ignore bus movements in layover areas that occur more than 
3 min before scheduled departure time, because bus move­
ments in staging areas were being falsely detected as trip starts. 
Staff at several agencies recommend locating signposts (real or 
virtual) not at route terminals, but a few minutes’ travel from 
the terminal. This arrangement resolves some of the match­
ing issues but leaves running time and schedule adherence at 
the route endpoints unmeasured. (Stop-level data collection 
effectively accomplishes the same thing.) Records made dur­
ing the layover, and algorithms using those clues can help 
reduce end-of-line matching errors. 

End-of-line complications also affect passenger count 
analysis, as discussed in Chapter 8. 

2.3	 Data Recording: 
On- or Off-Vehicle 

One essential distinction within automatic data collection 
systems is whether data is recorded in an on-board computer 
or in an off-vehicle central computer to which messages are 
sent via radio. Historically, AVL systems have been tied to the 
radio system and have used that connection for off-vehicle 
data recording. Stand-alone APC systems, in contrast, record 
data on board. From the viewpoint of a data archive, radio-
based systems are limited by radio channel capacity, while on-
board storage imposes no meaningful limit on either the 
number or detail of data records. 

Until the mid-1990s, on-board data storage was expensive 
and was therefore avoided. Since then, the cost of adding stor­
age capacity to on-board computers has ceased to be a signifi­
cant factor in system design. Therefore, newer systems, which 
sometimes blur the traditional AVL-APC distinction, can be 
designed with either on- or off-vehicle data recording, or both. 
In the mid-1990s, Tri-Met made the significant step of specify­
ing that its new AVL system both transmit messages by radio to 
serve real-time applications and store event records on board 
for off-line analyses. Because of radio channel limitations, 
radio messages are sent only for exceptions (a bus is more than 
3 min late or off route, or an event of interest occurs); on-board 
recording, in contrast, has no such limitation. 

2.3.1 Radio Messages and Record Types 

Radio systems use a wide area network (WAN) to manage 
communication between a central computer and on-board 
computers and radios. They are licensed by the Federal Com­
munications Commission (FCC) and have a limited number of 
radio channels.Limitations are most severe in large cities,where 
the demand for radio channels (for police, fire, taxi fleets, etc.) 
is greatest; unfortunately, large cities also have the larger bus 
fleets and therefore need more radio channels. Transit agencies 
typically dedicate some channels to voice and others to data; 

this research concerns the data channels. Because there may be 
hundreds of buses per radio channel, the radio traffic has to be 
managed to fit within the available capacity. 

Polling Records 

Most real-time AVL systems use round-robin polling to 
track their vehicles. The polling interval depends on the num­
ber of vehicles being tracked per radio channel; 40 to 120 s is 
typical. Within each polling cycle, every vehicle is polled in 
turn, and the vehicle responds with a message in a standard 
format. Round-robin polling is an effective protocol for avoid­
ing message collisions; however, the need to transmit messages 
in both directions, with a time lag at either end for processing 
and responding, means that a significant amount of time— 
on the order of 0.5 s—is needed to poll each bus. The polling 
cycle is therefore limited by the number of buses being 
monitored per radio channel. 

A polling message includes ID codes (for the vehicle, its run 
or block, and perhaps its route) and various fields for location 
data. Location fields depend on the location system used. For 
a beacon-based system, they include ID of the most recently 
passed beacon and odometer reading. For GPS systems, GPS 
coordinates will be sent, perhaps with odometer reading as 
well. The polling message often includes other fields such as 
an operator-activated silent alarm and mechanical alarms 
such as “engine overheated.” 

Polling provides location-at-time data (i.e., the location of 
the bus at the arbitrary time at which it is polled). However, the 
much more useful time-at-location data (i.e., time at which a 
bus passes a point of interest such as a stop or timepoint) is the 
format needed to analyze schedule adherence and running 
time. While polling data can be interpolated to get estimates of 
time-at-location data, such interpolation can involve signifi­
cant approximation error, especially when buses are traveling 
at low speeds because of traffic or stopping. In principle, if 
the polling interval were very short, approximations would 
become insignificant; however, radio channel capacity limita­
tions make short polling intervals impractical. (Many systems 
can switch to a short polling cycle for particular buses in an 
emergency, but that can only be done to the detriment of other 
buses’ polling interval.) 

The researchers found no examples of transit agencies 
extracting time-at-location information from polling data or 
basing any analysis of running time or schedule adherence on 
it. The only off-line use found for polling data was for detailed 
investigations of incidents using playback. 

Event Records 

In addition to round-robin polling, WANs also support 
messages initiated at the vehicle, generically called “event 
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messages.” Each event record has a code and specified format. 
Modern AVL systems can have 100 or more different types of 
event records. 

Messages initiated by on-board computers are likely to 
collide—that is, one bus will try to send a message while the 
channel is busy with another message. WANs manage this 
kind of network traffic problem in various ways, such as by 
having messages automatically re-sent until a receipt message 
is received. This need to manage traffic limits the practical 
capacity of radio-based communication, because, with ran­
domly arising messages, the channel has to be unoccupied a 
relatively high fraction of the time (unlike with round-robin 
polling) to provide an acceptable level of service. In the face 
of limited channel capacity, then, radio-based systems have to 
be designed in a way that limits the frequency and length of 
messages sent. 

Timepoint Records 

In most AVL systems, the timepoint event, indicating a bus’s 
arrival or departure from a timepoint, is the most frequent 
event record used for archived data analysis. The event can be 
defined in various ways, depending on the location system. 
Where GPS is used and door switches are not, it is common to 
report when the bus first reaches a circular zone (typically a 
10-m radius) around the stop. The timepoint record may also 
include the time the bus left that zone. In principle, timepoint 
records could also include fields indicating when doors first 
opened and last closed; however, the researchers are not aware 
of any radio-based systems incorporating door information. 

The level of detail of timepoint records affects their accuracy 
and value for off-line analysis. For example, some running time 
and schedule adherence measures are defined in terms of 
departure times, others in terms of arrival times, and others 
involve a difference between arrival time at one point and 
departure time at a previous timepoint. Off-line analysis there­
fore benefits from having both arrival and departure times 
recorded, particularly if operators hold at timepoints. Records 
of when buses enter and depart a stop zone are only approxi­
mations of when buses arrive and depart the stop itself. Errors 
can be significant in congested areas where traffic blocks buses 
from reaching or pulling out of a stop. Detail on door opening 
and closing, and on when the wheels stop and start rolling, can 
help resolve ambiguities and make arrival and departure time 
determination more accurate. 

Stop Records 

Stop events are much more frequent than timepoint events, 
and therefore, far more demanding of radio channel capacity 
if transmitted over the air. Therefore, most AVL-APC systems 
collecting data at the stop-level store stop records in the on-

board computer, uploading them overnight. However, some 
systems, including Metro Transit’s, find enough radio channel 
capacity to send stop messages over the air, though only for the 
subset of the fleet (under 20%) instrumented with APCs. 

The data items typically included in a stop record—in 
addition to the usual time stamp, location stamp, vehicle IDs, 
and door switches—are door opening and closing times and 
(if available) on and off counts. If routes are tracked by the 
on-board computer, as is the case with stop announcement 
systems, the stop record will include stop ID in addition to 
generic location information; otherwise, the data is matched 
in later processing. 

Other Event Records 

Timepoint and stop events are the frequent events that 
most off-line analysis relies on. Other event records can be 
valuable, either in their own right or because of the clues 
they offer for matching. 

Events whose records can be helpful for matching include 
the operator signing in, bus passing a beacon, bus going off 
route, and engine being turned off or on.“Idle” event records, 
indicating that a bus has not moved for a certain amount of 
time, are useful for confirming bus behavior at layover points 
or timepoints. Heartbeat records, written every 30 to 120 min, 
help confirm that the bus’s data recording system is working. 

Events of direct interest for off-line analysis include wheel­
chair boardings or alightings, bicycle mounting, various delay 
types (e.g., drawbridge, railroad crossing), and pass-ups. Most 
such event messages are manually triggered by the operator; 
although some (e.g., wheelchair lift use) can be automatically 
generated. 

2.3.2 On-Board Data Recording 
and More Message Types 

In contrast to radio-based data recording, on-board data 
recording essentially offers unlimited capacity (because on-
board data storage is so inexpensive it is easily obtainable). 
It is also more robust, not being subject to radio system fail­
ure. (Some radio-based systems, such as Metro Transit’s, 
include backup on-board data storage during periods of 
radio failure to prevent data loss. Event records stored on board 
are uploaded at pull-in using the radio system and merged into 
the event database.) 

Radio Integration and Operator-Initiated Data 

Expecting operators to key in event data that is used for 
data archiving only is considered unrealistic. Therefore, event 
records are generally limited to what can be automatically 
generated, unless the on-board computer is connected to the 
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radio, in which case it can also capture operator sign-in and 
operator-initiated events. Several AVL-APC systems feature 
this arrangement, which helps facilitate matching and yields a 
richer database. On-board integration with the radio control 
head is recommended even if there is no real-time AVL. 

Off-line, radio-based event records also can conceivably be 
integrated with records uploaded from the on-board com­
puter. However, the researchers are not aware of this design 
being used. 

Interstop Records and Detailed Tracking 

With on-board data collection, data can also be collected 
between stops. One data collection mode is to make records 
very frequently (e.g., every 2 s); this mode uses buses as GPS 
probes, which can enable such special investigations as study­
ing the bus’s path through a new shopping center or studying 
bus movements in a terminal area. Frequent interstop records 
also offer information on speed and acceleration. 

An alternative data collection mode is to write event records 
for defined events that can occur between stops, such as cross­
ing a speed threshold. To measure delay, Eindhoven’s system 
records whenever a bus’s speed rises above 5 km/h or falls 
below 4 km/h. (Using differing thresholds prevents oscillation 
when the bus is traveling at the threshold speed.) Records for a 
variety of speed thresholds could be useful for analyzing speed 
profiles. Tri-Met’s system tries to capture maximum speed 
between stops, both as a measure of traffic flow and as a safety 
indicator. It tracks speed continuously, storing the greatest 
speed since the last stop in a temporary register; then at each 
stop, maximum speed since the previous stop is recorded. 

Data Uploading 

When data is recorded on vehicle, there has to be a system 
for uploading the data from the on-board computer to the 
central computer. Newer systems usually include an auto­
matic high-speed communication device through which data 
is uploaded daily when buses are fueled. Older systems such 
as Tri-Met’s rely on manual intervention, such as exchanging 
data cards or attaching an upload device, which adds a logis­
tical complication. 

The absence of an effective upload mechanism can render an 
otherwise promising data collection system useless for off-line 
data analysis. One transit agency has a new stop announcement 
system that records departures from every stop. However, the 
data is overwritten every day, because the data logging feature 
was intended for system debugging, not data archiving. To 
make it an archived data source, the agency would have to 
either exchange cassettes nightly, something it deemed imprac­
tical, or invest in a high-speed data transfer link, something it 
found too expensive. 

Communication is also needed from the central computer 
to the on-board computer, whether for occasional software 
upgrades or daily schedule updates. In general, the communi­
cation method used for upload is used for download as well. 

2.3.3 Exception-Only Data Recording 

Some AVL systems send timepoint messages only if a bus is 
off schedule, partly to limit radio traffic, and partly because 
controllers are usually interested only in service that is off 
schedule. For example, Tri-Met’s AVL-APC system transmits 
only exception messages by radio, while saving a full set of 
records on board for later analysis. 

However, if exception data is all that is available for off-line 
analysis, analysis possibilities become severely limited. For 
example, if only off-schedule buses create timepoint records, 
running times can only be measured for off-schedule buses. 
Researchers at Morgan State University tested the feasibility 
of data analysis using exception data from bus routes in Bal­
timore, MD (13). Because they had records only on buses that 
were outside an on-time window, they focused on next-segment 
running time for buses that arrived at a timepoint early or 
late. If the bus reached the next timepoint “on time,” the 
researchers had to guess when within the on-time window 
the bus arrived. Also, because the system archived only 
exception messages, it was impossible to know whether a 
missing record meant that a bus was on time or that the 
radio system had failed. In an interview, the Morgan State 
researchers stated that while the Mass Transit Administration 
(MTA) had asked them to systematize the way they trans­
formed the raw data into records that would support analy­
ses of running time and schedule adherence, they felt it was 
impossible given the frequent need for assumptions to make 
up for missing data. 

Fortunately, advances in radio technology have reduced the 
pressure to limit data collection to exceptions. As an example, 
CTA’s real-time AVL system, specified in 1993 to provide loca­
tion data only if buses were off schedule, was modified in 2002 
so that buses transmit location data regardless of whether they 
are off schedule. 

2.4 Data Recovery and Sample Size 

Automatic data collection systems do not offer 100% data 
recovery. Traditional APCs have the worst record; a 1998 sur­
vey found net recovery rates for APCs ranged from 25% to 
75%, with newer systems having better recovery rates (14). In 
1993, the Central Ohio Transit Authority (COTA) reported that, 
with 11.9% of the fleet APC equipped, it netted on average five 
usable samples per assignment each quarter (15). That rep­
resents a 6.1% sampling rate, for a net recovery rate of about 
50%. Only a small part of that loss was due to mechanical 
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failures, as mechanical reliability was reported to be well 
above 90%. 

Less is known about data recovery rates for radio-based AVL 
systems. King County Metro recovers AVL data from about 
80% of its scheduled trips. However, with the entire fleet 
instrumented, data recovery rates are not so important with 
AVL unless there is systematic data loss in particular regions. 

Inability to match data in space and time is the single 
most cited reason for rejecting data. There are other reasons, 
including malfunctioning on-board equipment, data being 
out of range, radio failure, and so forth. Imbalance in pas­
senger counts, another common problem that forces data to 
be rejected, is covered in Chapter 8. 

The effective sampling rate of an AVL-APC system is the fleet 
penetration rate multiplied by the data recovery rate. If 10% of 
the fleet is equipped, and data is recovered from 70% of the 
instrumented vehicles, scheduled trips will be observed, on 
average, 10% * 70% = 7% of the number of times they are oper­
ated. In a 3-month period containing 65 weekdays, 13 Satur­
days, and 13 Sundays, average observations per scheduled 
trip will be 4.5 for weekday and just under 1 for Saturday and 
Sunday trips. 

An average sampling rate can mask significant variations 
across the system. When fleet penetration is small, logisti­
cal difficulties coupled with the vagaries of data recovery 
failure often result in some scheduled trips being sampled 
well more than the average number of times, and others 
perhaps going completely unobserved. Management of the 
rotation of the instrumented vehicles, then, becomes another 
important factor in determining whether needed data will 
be available. 

In an example drawn from the project’s case studies, an audit 
of King County Metro’s Fall 1998 sign-up (a 4-month period) 
found on average six valid APC observations per weekday 
scheduled trip, for a sampling rate of 7.5%. With about 15% of 
the fleet instrumented, that represents a data recovery rate of 
50%. Coverage across the schedule was variable. King County 
Metro recovered at least one valid observation on 97% of their 

scheduled weekday trips, and at least three valid observations 
for 83% of its scheduled weekday trips. On the weekend, 
85% of scheduled trips had at least one valid observation. In 
2002, King County Metro reported that its recovery rate had 
improved to the 60% to 70% range. 

In general, a small sample size is sufficient to reliably esti­
mate the mean of a quantity with low variation such as run­
ning time on a segment or demand on a particular scheduled 
trip. In contrast, a large sample size is needed to examine vari­
ability or extreme values, such as the 90-percentile running 
time or load. A very large sample size is needed to accurately 
estimate proportions, such as proportion of departures that 
are on time (16). 

Analyses that aggregate scheduled trips into periods, or 
that aggregate routes, have the advantage of a larger sample 
size than analyses of individual scheduled trips. For this 
reason, many customary analysis methods, developed in a 
limited-data environment, find results for the period rather 
than the trip, and for the system rather than the route. 

A large sampling rate allows more timely analysis of data. 
Over a long enough period of time, even a small sampling 
rate will yield a large number of observations. However, for 
management to react promptly to demand and performance 
changes, or measure the impact of operation changes, analysts 
need recent data. Therefore, tools used in the active manage­
ment of a dynamic system will benefit from the high sampling 
rate that follows when the entire fleet is equipped. 

Because leader-follower or headway analysis requires valid 
observations of consecutive pairs of trips, the number of valid 
headways one can expect to recover is proportional to the 
square of the data recovery rate and the correct assignment 
rate. For example, if the data recovery rate is 70% and if a 
request to instrument a given route results in 90% of the trips 
on that route having an instrumented bus, one can expect to 
observe only (0.7)2 * (0.9)2 = 40% of the day’s headways on that 
route. If there is a realistic possibility of trips overtaking each 
other, having anything less than data from all the operated trips 
casts some doubt on calculated headways. 
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C H A P T E R  3  

Integrating Other Devices


While automatic vehicle location, automatic passenger 
counting, and farebox systems began as the single-purpose 
systems their names imply, their value as data collection sys­
tems soon became apparent. Using the expanded definition 
of AVL as an automatic data collection system that includes 
location measurement, this section describes other devices 
that can be integrated into the data collection system. 

3.1	 Automatic Passenger Counters 

Unlike AVL, APCs have always been designed with archived 
data in mind. Valuable reviews of the history of APCs are 
found in reports by Levy and Lawrence (17), Boyle (14), and 
Friedman (18). APCs use a variety of technologies for count­
ing passengers, including pressure-sensitive mats, horizontal 
beams, and overhead infrared sensing. Automatic passenger 
counting has not yet seen widespread adoption primarily 
because of its cost and the maintenance burden it adds. Where 
adopted, APCs are typically installed on 10% to 15% of the 
fleet. Equipped buses are rotated around the system to provide 
data on every route. However, technological advances may 
soon make APCs far more common. 

The term “APC” can refer to a full data collection system or 
to simply the passenger counter as a device within a larger 
data collection system. Historically, APCs were implemented 
as full, independent systems that included location measure­
ment and stop matching. In spite of the emphasis their name 
gives to passenger use data, they not only counted passengers 
but also provided valuable operation data that supported 
analysis of running time and schedule adherence; in effect, 
they doubled as (non-real-time) AVL systems. Canadian tran­
sit agencies have been particularly active in exploiting APC 
data. OC Transpo, the Toronto Transit Commission, Winnipeg 
Transit, Tri-Met, and King County Metro are among the agen­
cies that have long benefited from routine reports on passen­
ger loads, running time distribution, and on-time performance 
from APC systems. 

Since the mid-1990s, the trend has been for APCs to become 
simply a component in a larger data collection system that 
includes automatic vehicle location. Location and stop match­
ing is the duty of the vehicle location system, which operates 
out of a main on-board computer called the “vehicle logic 
unit.” The passenger counter includes sensors and a dedicated 
on-board computer called an APC analyzer that converts 
sensor information into passenger counts. Each time the bus 
leaves a stop, the APC analyzer closes out a record and trans­
mits its on-off counts to the vehicle logic unit. From there, the 
data is treated like data from any other device in the data col­
lection system—either stored on board for later upload, or 
transmitted by radio in a stop event message. 

By integrating APCs into an AVL system, the marginal cost 
of passenger counting drops dramatically. Tri-Met, already 
committed to fleetwide AVL and using one of the simpler APC 
designs, finds the marginal cost of adding passenger counting 
to be in the range of $1,000 to $3,000, versus unit costs of 
$5,000 to $10,000 often cited for stand-alone systems. This 
marginal cost is low enough that Tri-Met includes APCs in all 
new coach purchases. With 65% of its fleet already equipped, 
it is the only large transit system with APC penetration beyond 
a small sample of the fleet. Benefits of a large APC sample are 
discussed in Section 10.4. 

APC counting accuracy depends on the technology used, 
the care used in mounting and maintaining sensors, and algo­
rithms used to convert sensor data into counts. The accuracy 
of finished counts also depends on the effectiveness of stop 
matching and identifying the end of the line, subjects discussed 
earlier; it also depends on algorithms used for screening, pars­
ing, and balancing, which are covered in Chapter 8. 

3.2	 Odometer 
(Transmission Sensors) 

As mentioned earlier, all buses have electronic transmis­
sion sensors that serve as odometers, giving a pulse for every 
axle rotation. Integrating the transmission into an automatic 
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data collection system provides the basis for dead reckoning 
and enables data on speed to be captured. Estimating speed 
from GPS measurements is not reliable (except over substan­
tial distances) because of random measurement errors. There­
fore, odometer input is preferred to determine when a bus’s 
wheels start rolling after serving a stop. 

Some AVL systems also integrate a gyroscope, which indi­
cates changes in heading. Gyroscope readings will support off-
route dead reckoning and can aid in matching because they 
detect turns. 

3.3 Door Switch 

APC systems in North America always include door switches 
to help determine when a bus is making a stop. Even when a 
system does not include passenger counting, door switches 
can be a valuable means of location matching. If a system 
repeatedly shows doors opening at a location not coded in the 
base map as a stop, that information can be used to update the 
base map. In some Dutch transit systems, door sensors are used 
to distinguish time spent holding (bus is resting at a stop, ahead 
of schedule, doors closed) from dwell time spent serving pas­
senger movements. 

APC vendors in Latin America know that buses there often 
operate with doors open, rendering door switch readings 
useless. 

3.4 Fare Collection Devices 

The traditional electronic farebox has limited data storage 
capacity, creating one record per one-way trip with simply a 
count of the trip’s boardings and revenue. Farebox manufac­
turers have historically been reluctant to allow their machines 
to communicate with other on-board devices, citing the need to 
prevent fraud by keeping revenue-related information secure. 
Limited integration schemes, such as sharing a common oper­
ator log-in and interface to the destination sign (to indicate 
change in route/direction), have been applied at a few transit 
agencies. Recent products advertise J1708 compatibility (see 
Section 3.6). 

A new development is the transactional farebox, which 
produces a time-stamped record for each transaction. If the 
fareboxes are networked to a smart bus system, transaction 
data can be transmitted along the data bus and collected as 
part of the AVL event stream. 

If fareboxes are not integrated, off-line integration of the 
farebox’s own data stream with archived AVL data, in princi­
ple, should be possible, with matching performed on the basis 
of vehicle ID and time. A research project for the CTA attempt­
ing to prove this concept found several obstacles to integrating 
the data sources. Farebox and AVL clocks were not synchro­
nized. Also, the fare transaction data contained many unex­

plained anomalies. For example, one would expect that people 
transferring from one route to another (the farebox transaction 
data includes route transferred from) would board the second 
bus where the two routes intersect, providing a means of ver­
ifying a stop matching; however, the data shows such trans­
fers occurring at multiple stops, some a good distance from 
the transfer point. Because farebox data is not usually analyzed 
at this level of detail, its quality in many respects has not mat­
tered before. Improving the quality of farebox data will be a 
challenge to efforts to integrate it with AVL-APC data. Once 
this challenge is met, however, it offers the prospect of a rich 
data source from 100% of the fleet. 

While fareboxes cannot directly measure load because they 
do not register passengers both boarding and alighting, there 
are methods of estimating load based on the historical sym­
metry between the boardings pattern in one direction and the 
alightings pattern in the opposite direction (19). As contact-
less smart cards penetrate the market, card readers, some day, 
may be able to count passengers alighting as well as boarding. 

Transaction data in which the fare medium is electronic 
offers the possibility of tracking linked trips and analyzing 
transfers, by linking records with a common user ID. Know­
ing the pattern of where and when a particular farecard was 
used to enter the system allows estimation of the cardholder’s 
trip pattern to be made, based on round trip symmetry. The 
viability of this approach has been demonstrated in the New 
York subway system (20) and in the multimodal Helsinki tran­
sit system (21). A research project is currently under way, with 
promising results, using Dublin bus data in which farecard 
transactions are all station stamped. 

In the near future, Metro Transit plans to introduce smart 
cards, bypassing the farebox, with smart card readers inte­
grated into its vehicle location system. This arrangement may 
finally produce the long hoped-for benefits of integrating fare 
collection with vehicle location. 

3.5 Other Devices 

3.5.1 Radio Control Head 

As discussed in Section 2.2.1, integrating the control head 
ensures that the AVL data stream gets both sign-in data and 
data messages sent by the bus operator to the control center. 

3.5.2 Passenger Information Systems 

Passenger information devices, including the destination 
sign and next stop announcements, can be integrated with a 
location system; however, because they become consumers, 
not suppliers, of information, they add nothing directly to a 
data archive. Their integration does bring an indirect benefit 
to archived data by increasing the pressure for the system to 
match routes and stops accurately. 
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3.5.3 Wheelchair Lift 

Lift sensors can initiate a location-stamped record of lift 
use, a valuable piece of information for off-line analysis of 
both ridership and running time. In the survey, no examples 
of lift sensors being used in AVL systems were found; lift data, 
where available, came from operator-initiated messages sent 
by radio. 

3.5.4 Silent Alarm 

AVL systems usually include an operator-initiated silent 
alarm for emergencies. Its recording is valuable for incident 
investigations. 

3.5.5 Mechanical Sensors 

Transit buses have had electronic controls and monitor­
ing systems for many years (22). Besides transmission sen­
sors, such systems include, for example, engine heat and oil 
pressure sensors. AVL systems have sometimes taken input 
from such sensors, triggering mechanical alarms for high tem­
perature or low pressure; however, false positives have been 
too frequent and therefore no use has been found for mechan­
ical alarms. 

It has been suggested that mechanical data incorporated 
into a data archive (as opposed to triggering real-time alarms) 
may yield valuable insight into maintenance needs. 

3.6 Integration and Standards 

On-board devices can be integrated in an ad hoc fashion, or 
following a systematic integration standard. Standardization 
helps promote the cost and efficiency benefits of modularity 
and re-use. 

3.6.1 SAE Standards and Smart Bus Design 

Systematic on-vehicle integration of devices has been called 
the “smart bus” concept. The principal on-vehicle device is 
the main data collection computer or vehicle logic unit. In 
principle, the vehicle logic unit and other devices are each 
connected to a twisted pair of copper wire running the length 
of the vehicle and called the “data bus.” (In practice, there are 
often a few devices, such as GPS receivers, connected directly 
to the vehicle logic unit instead of via the data bus. Wireless 
networking has also become possible as a substitute for a phys­
ical data bus.) The network consisting of the data bus and 
attached devices is a local area network (LAN, often called a 
“vehicle area network” (VAN). Devices broadcast messages on 
the network when triggered by an event; other devices receive or 
ignore the message, depending on how they are programmed. 
A communication protocol governs message types and man­

ages traffic on the VAN. Nearly all the relevant devices man­
ufactured today comply with the J1708 family of standards 
(23, 24) published by SAE, the integration standard used in 
many AVL systems. Some AVL integrators use a proprietary 
VAN protocol that they claim handles message traffic better. 

An advantage of integration is providing operators with a 
single interface and a single sign-in, which can be shared (in 
principle) with such disparate devices as the radio, the event 
recorder (a function usually taken by the vehicle logic unit), 
the farebox, the stop announcer, and the destination sign. In 
practice, fareboxes are rarely integrated and therefore have a 
separate interface. 

The most significant integration is the integration of APC 
with AVL, first implemented in the mid-1990s at Tri-Met. The 
AVL vendor provided a smart bus with location tracking; 
therefore, the APC subcontractor had to provide only the pas­
senger sensors and APC analyzer, relying on the AVL system 
for stop matching. Another example is a stop announcement 
system vendor who provides the smart bus system, with APCs 
added as a supplemental device. 

While it may seem obvious that AVL, APC, and stop 
announcement systems should share location systems and 
on-board computers, their integration is only a recent devel­
opment. In fact, for various cost and contract reasons, sepa­
rate location systems are still being installed independently at 
some transit agencies that lack the smart bus foundation, with 
buses having multiple GPS receivers, multiple on-board com­
puters, and, in spite of efforts to avoid it, multiple operator 
interfaces. Using an open, standards-based smart bus design 
when procuring an AVL, APC, stop announcement, or event 
recording system substantially lowers the marginal cost of 
adding the other functions and provides flexibility for later 
procurements. 

3.6.2 Other Integration 
and Standards Efforts 

Transit Communications Interface Profiles (TCIP) 

The TCIP project, started in 1996, is a standards develop­
ment effort sponsored by the U.S.DOT’s Joint Program Office 
for Intelligent Transportation Systems (ITS). Its mission has 
been to define the data elements and message sets that can be 
specified as an open data interface for transit data interchange 
activities. Phase 1, completed in 1999, established a transit ITS 
data interface “Framework” and eight “Business Area Object 
Standards.” Phase 2, completed in June 2001, built on the work 
of Phase 1 by developing the transaction sets, application pro­
files, and guidebooks required to test and implement TCIP. 

Some of the pertinent TCIP developments include 

•	 The definition of automatic vehicle location objects, includ­
ing compass bearing parameter, current time, current date, 
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trip distance, position, velocity vector, total vehicle distance, 
and milepost identification; 

•	 The definition of conformance groups that consist of a list 
of objects required to support a specific function. Confor­
mance groups were defined for dead reckoning, triangula­
tion, GPS, etc.; 

•	 The development of a standard on spatial representation 
objects, including a data dictionary and the definition of 
message objects set; and 

•	 The development of a standard for on-board objects, also 
including a data dictionary and the definition of message 
objects set. 

TCIP object definitions include most schedule features, 
which are important for matching a vehicle and data collected 
on it to the route and trip on which it is operating. Some AVL 
and APC vendors have adopted the TCIP standard for their 
schedule data. However, TCIP has not yet been widely adopted 
by transit agencies as part of their product specifications and 
Requests for Proposals. Moreover, there are aspects of sched­
ules that are not covered in TCIP, such as when a bus is simul­
taneously discharging passengers from an inbound trip and 
picking up passengers for an outbound trip. Among the peo­

ple working to improve the TCIP standard are those involved 
with AVL and APC data. 

Location Referencing Guidebook 

The recently published Best Practices for Using Geographic 
Data in Transit: A Location Referencing Guidebook (12), funded 
jointly by FTA and the Transit Standards Consortium, pro­
motes effective practices in the exchange and use of spatial 
data, including stop and route definitions. 

FTA National Transit GIS Initiative 

The FTA initiated in the mid-1990s a National Transit Geo­
graphic Information System to develop an inventory of pub­
lic transit assets in the United States. Although the effort 
focused primarily at a high national level, it was also designed 
to encourage more use of GIS tools by transit systems. Its 
1996 report discusses the design of bus stop and route data­
bases as well as specifications for data exchange involving 
GIS databases (25). This effort was to some extent a precur­
sor to the Location Referencing Guidebook project discussed 
earlier. 
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C H A P T E R  4  

Uses of AVL-APC Data


This chapter includes traditional analysis methods as well 
as new tools developed by agencies using archived AVL-APC 
data. In addition, part of this project’s survey/interview 
process included asking for suggestions of how AVL-APC 
data might be used, and the researchers also developed some 
concepts. 

To a large extent, performance analysis can be driven by a 
performance-monitoring protocol that specifies measures or 
indicators that are to be reported. Transit agencies have exper­
imented with a large number of performance measures. AVL 
or APC data apply to many of the performance measures listed 
in TCRP Report 88: A Guidebook for Developing a Transit 
Performance-Measurement System (26). TCRP Report 100: 
Transit Capacity and Quality of Service Manual (27) also sug­
gests several AVL- and APC-related measures for use as service 
quality indicators. 

A list of current and potential uses of AVL-APC data is given 
in Table 4. They are discussed in detail beginning in Section 
4.3, following general discussions of data uses in an era of 
automatic data collection (Section 4.1) and of data needs for 
different analyses (Section 4.2). Section 4.3 includes several 
examples of analysis reports; many more can be found in the 
accompanying case studies. Both TCRP (14) and the Cana­
dian Urban Transit Association (17) have published synthe­
ses of practice that include numerous samples of reports 
generated from archived AVL and APC data. 

4.1	 Becoming Data Rich: 
A Revolution in 
Management Tools 

The transit industry is in the midst of a revolution from 
being data poor to data rich. Traditional analysis and deci­
sion support tools required little data, not because data has 
little value, but because traditional management methods 
had to accommodate a scarcity of data. Automatic data-
gathering systems do more than meet traditional data needs; 

they open the door for new analysis methods that can be 
used to improve monitoring, planning, performance, and 
management. 

Transit agencies—such as Tri-Met, King County Metro, OC 
Transpo, and HTM—that have good, automatically collected 
operational data are finding more and more uses for it. At first, 
agencies may look to an automatic data collection system only 
to provide the data needed for traditional analyses. But, once 
they have the larger and richer data stream that AVL and APCs 
offer, they think of new ways to analyze it, and they want more. 
Eventually, their whole mode of operation changes as they 
become data driven. One APC vendor explains, “We’re selling 
an addiction to data.” 

Five trends in data use have emerged from the paradigm 
shift from data poor to data rich: 

•	 Focus on extreme values 
•	 Customer-oriented service standards and scheduling 
•	 Planning for operational control 
•	 Solutions to roadway congestion 
•	 Discovery of hidden trends 

4.1.1 Focus on Extreme Values 

Traditional methods of scheduling and customer service 
monitoring generally use mean values of measured quanti­
ties, because mean values can be estimated using small sam­
ples. However, many management and planning functions 
are oriented around extreme values and are, therefore, better 
served by direct analysis of extreme values such as 90th- or 
95th-percentile values. These extreme values now can be esti­
mated reliably because of the large sample sizes afforded by 
automatic data collection. Three examples follow: 

•	 Recovery time is put into the schedule to limit the proba­
bility that a bus finishes one trip so late that its next trip 
starts late. Therefore, logically, scheduled half-cycle times 



Table 4. Decision support tools and analyses and their data needs. 

Function Tool/Analysis Record Type 
Needed 

Data Detail or Analysis Capacity Needed Sampling Rate Needed 

Targeted 
Investigations 
(complaints, disputes, 
incidents) 

General view 

Trip recorder view (speed, acceleration)  

Any 

Interstop 

Incident codes, control messages. 

Maximum speed;records every 2 s or more 
to measure acceleration/deceleration rates. 

100% 

100% 

Analyzing and Route and long segment running time and Timepoint Endpoint data needed for route running time. 10% for mean running time; 
Scheduling scheduling Both arrival and departure times are helpful. 100% for analysis and 
Running Time Stop-level running time and scheduling Stop scheduling based on 

Running time net of holding time Stop Door open and close times, incident codes, extreme values 

control messages, on and off counts. 

Speed and traffic delay Stop, interstop 10% 

Dwell time analysis Stop Door open and close times, on and off 10% 
counts, farebox transactions, incident codes. 

Schedule Adherence Schedule deviation  Timepoint Both arrival and departure times are helpful. 
and Long-Headway 
Waiting 

Waiting time (long headway) 

Connection protection 

Stop 

Timepoint Arrival and departure times, control 
100% 

messages, farebox transactions. 
Headway Analysis Plotting successive trajectories Timepoint 
and Short-Headway 
Waiting 

Route-level headway analysis 

Waiting time (short headway) 

Timepoint 

Stop 
100% 

Bunching (load/headway) analysis Stop Current on and off counts. 

Route Demand 
Analysis 

Demand along a route 

Demand over the day and 
headway/departure time determination 

Stop 

Stop 

On and off data. 

On and off data. 

10% for mean values; 
100% for analysis and 
scheduling based on 
extreme crowding  

Passenger crowding Stop On and off data. Near 100% 

Pass-ups, special uses, and fare categories Stop Incident codes, farebox transactions. 100% 



Mapping Geocode stops, verify base map Stop 10% 
Map bus path through shopping centers, Interstop Interface for surveyor-initiated comments. 10% 
new subdivisions, etc. 

Miscellaneous Acceleration and ride smoothness Interstop Records every 2 s or more.  100% 
Operations Analysis Mechanical demand Stop, interstop 100% 

Terminal movement  Interstop 100% 

Control messages Varies Incident codes and control messages. 100% 

Operator performance Varies 100% 

Higher Level Before–after study Varies As required by the type of analysis. varies 
Analysis Special event/weather analysis 

Trends analysis 

Aggregation and comparison over routes, Varies Multiroute analysis capacity 
including systemwide passenger-miles  
Transfer and linked-trip analysis  Stop Farebox transactions with card IDs. 100% 
Shared route analysis, including headways Varies Data structures for shared routes. 
and load on a trunk 
Geographic demand and service quality Stop GIS with stop locations. 100% 
analysis 

Note: Items in italics are optional. 
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(scheduled running time plus recovery time) should be 
based on an extreme value such as the 95th-percentile run­
ning time. However, without enough data to estimate the 
95th-percentile running time, traditional practice sets it 
equal to a fixed percentage (e.g., 15% or 20%) of scheduled 
running time. Yet, some route-period combinations need 
more than this standard, and others less, because they do 
not have the same running time variability. AVL data allows 
an agency to actually measure 95th-percentile running 
times and use that to set recovery times. A study for Tri-Met 
found that basing recovery times on 95th-percentile run­
ning times would lead to substantial changes in cycle time 
that, compared to their current schedule, could reduce 
annual operating cost by an estimated $7 million (28). 

•	 Passenger waiting time is an important measure of serv­
ice quality. Studies show that customers are more affected 
by their 95th-percentile waiting time—for a daily traveler, 
roughly the largest amount they had to wait in the previ­
ous month—than their mean waiting time, because 95th­
percentile waiting time is what passengers have to budget 
in their travel plans to be reasonably certain of arriving 
on time. 

•	 Passenger crowding is also a measure in which extreme 
values are more important than mean values. Although 
traditional planning uses mean load at the peak point to 
set headways and monitor crowding, planners understand 
that what matters for both passengers and smooth oper­
ations is not mean load but how often buses are over­
crowded. Therefore, design standards for average peak load 
are set a considerable margin below the overcrowding 
threshold. However, load variability is not the same on 
every route. With a large sample of load measurements, 
headways can be designed and passenger crowding meas­
ured based on 90th-percentile loads, or a similar extreme 
value, rather than mean loads. 

4.1.2 Customer-Oriented Service Standards 
and Schedules 

AVL-APC data allows customer-oriented service quality 
measures to replace (or supplement) operations-oriented 
service standards. For example, on high-frequency routes, a 
traditional operations-oriented standard of service quality is 
the coefficient of variation (cv) in headway. Although such a 
standard may mean something to service analysts, it means 
nothing to passengers, and it resists being given a value to pas­
sengers (e.g., how much does it benefit passengers if the head­
way cv falls from 0.35 to 0.25?). With a large sample size of 
headway data, one can instead measure the percentage of pas­
sengers waiting longer than x minutes, where x is a threshold 
of unacceptability. Similarly, in place of average load factor as 
a crowding standard, one could use a standard such as “no 

more than 5% of our customers should experience a bus 
whose load exceeds x passengers.” 

As these examples show, a shift toward customer-oriented 
measures goes hand-in-hand with the ability to measure 
extreme values. 

4.1.3 Planning for Operational Control 

One of the questions posed by the explosion of informa­
tion technology is how best to use information in real time to 
control operations, for example, by taking actions such as 
holding a bus to protect a connection or having a bus turn 
back early or run express. As agencies experiment with, or use, 
such actions, they need off-line tools to study the impacts of 
these control actions in order to improve control practices. 
For example, AVL-APC data were used to determine the 
impacts of a Tri-Met experiment in which buses were short-
turned to regularize headways during the afternoon peak in 
the downtown area (29). 

4.1.4 Solutions to Roadway Congestion 

Transit agencies are more actively seeking solutions to 
traffic congestion, such as signal priority and various traffic 
management schemes. They need tools to monitor whether 
countermeasures are effective. For example, a Portland State 
University study done for Tri-Met using archived AVL-APC 
data found that while signal priority reduced running time on 
some routes, it had no positive effect on others (30). In that 
particular study, only the overall effect on rather long seg­
ments was analyzed by comparing before and after running 
times, making the results hard to correlate with particular 
intersections. For better diagnosis and fine-tuning of coun­
termeasures, agencies need tools to analyze delays on stop-to­
stop, or shorter, segments. 

4.1.5 Discovery of Hidden Trends 

Behind a lot of the randomness in transit operations may 
be some systematic trends that can be discovered only with 
large data samples. For example, by comparing operators 
with others running the same routes in the same periods of 
the day, Tri-Met found that much of the observed variability 
in running time and schedule deviation is in fact systematic: 
some operators are slower and some faster. Exploratory 
analysis might also reveal relationships that can lead to bet­
ter end-of-line identification, or to better understanding of 
terminal circulation needs. 

It is the nature of exploratory analysis to not have a pre­
defined format. To support exploratory analysis, therefore, 
AVL-APC databases need to be open to standard data analy­
sis tools. 
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4.2 Key Dimensions of Data Needs 

Along with listing uses of AVL-APC data, this chapter seeks 
to identify the particular data needs for each use, so that peo­
ple involved in AVL-APC system design can better determine 
what features are needed to support various analyses. As indi­
cated in Table 4, the needs of various analysis tools can be 
examined along three dimensions: basic record type, data 
detail, and sampling rate. 

4.2.1 Basic Record Type 

Four basic record types, giving vehicle location at regular 
intervals, are considered. (For more detail on record types, see 
Sections 2.3.1 and 2.3.2.) Polling records are not suited to stop 
or timepoint matching and therefore are only suitable for man­
ual investigations involving playback. Timepoint records and 
stop records differ chiefly in level of geographic detail. In addi­
tion, stop records, which may or may not include passenger 
counts, are assumed to include the time at which doors opened 
and closed, or time of passing a stop if a bus does not stop. 
Timepoint records are assumed only to have either arrival or 
departure times. Interstop records are records of speed between 
stops; the term can also refer to summary data about what 
occurred between stops that may be part of a stop record. 

4.2.2 Data Detail 

This second dimension indicates what additional data are 
needed, either as additional items in the basic record type or 
captured in infrequent event records. Data detail is mainly 
affected by what devices are integrated into the AVL system. 

4.2.3 Sampling Rate 

As mentioned earlier, analyses involving estimation of 
mean values require a relatively small sample, while esti­
mating extreme values or proportions requires large sample 
sizes. Therefore, it makes sense, and is consistent with prac­
tice, to treat this dimension as binary: either 100% (all vehi­
cles equipped) or 10% (a sample of the fleet equipped), 
noting however that some uses that demand large sample 
sizes on a subset of routes can be accommodated without 
instrumenting the entire fleet, if the instrumented percent­
age is managed carefully. 

4.3 Targeted Investigations 

Analysis tools may be used in targeted investigations, which 
may be conducted to support legal, payroll, operations, main­
tenance, and other functions. For this category, transit agen­
cies use archived AVL data to investigate suspected operator 

misbehavior and customer complaints, incidents, or accidents. 
These cases can be investigated using playback (a capability 
of many AVL systems oriented to real-time applications) in 
which data from the subject trip is viewed as if it were hap­
pening in real time. If stop or timepoint records are stored in 
a database, cases can be investigated more efficiently using 
general query capability. 

For investigating incidents, it is often helpful simply to deter­
mine whether the bus in question was really there. Several tran­
sit agencies report having refuted accident claims by referring 
to archived AVL data. GPS-based location systems can indicate 
whether a bus was off route. Being able to relate the AVL data to 
operator-initiated event records and to control messages sent 
by dispatchers can be helpful for some types of investigations. 

With interstop records, speed and possibly acceleration 
information can be extracted from an AVL database; however, 
to date, no agencies are known to sample so frequently as to 
give their AVL system the “black box”function of trip recorders 
that have become common for accident investigations in avia­
tion and trucking. 

For investigating customer complaints, simple playback 
(or better yet, a database query) can identify whether a bus was 
very early or late, or (with GPS data) off route. However, 
because being early is often a matter of only 1 or 2 min, time-
point records are better than polling records for verifying com­
plaints about early buses. Also, because an early arrival does not 
necessarily mean an early departure, the location data should 
indicate departure time. 

Some agencies use their AVL data to investigate operator 
overtime claims. AVL data has shown, for example, that an 
operator who reported late to the garage actually finished his 
last trip on time, suggesting that the late pull-in was inten­
tional. Speed data from interstop records can be used to mon­
itor speeding; however, experience has shown that speed data 
can be quite unreliable. 

4.4 Running Time 

Analyzing and scheduling running time is one of the rich­
est application areas for archived AVL-APC data. Without AVL 
data, agencies must set running times based on small manual 
samples, which simply cannot account for the running time 
variability that comes with traffic congestion. 

Buses are scheduled at the timepoint level; therefore, sched­
uling demands timepoint data. Because schedules sometimes 
refer to arrivals as well as departures, it is helpful if timepoint 
records include both arrival and departure times. 

Running time analyses that require only estimation of mean 
values, or that involve only occasional studies (e.g., delay and 
dwell time analysis), can be conducted with only a sample of the 
fleet equipped with AVL. However, routine scheduling applica­
tions based on extreme values need the entire fleet equipped. 
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As part of this project, a set of improved analysis tools was 
developed for analyzing running time. They are mentioned in 
this section, but illustrated and further described in Chapter 5. 

4.4.1 Allowed Time, Half-Cycle Time, and 
Recovery Time 

A common analysis examines the distribution of observed 
running time for scheduled trips across the day compared with 
scheduled running time, also called “allowed time.”An example 
is given in Figure 2, where the vertical bars show mean observed 
running time, the short lines show 85th-percentile values, and 
the arrows indicate maximum observed running times. Heavy 
horizontal lines show scheduled running time. This figure also 
distinguishes net and gross trip time, as explained in Section 
4.4.4. When the number of observations is not too large, a scat­
terplot showing every observation can be useful. 

Based on the observed distribution of running time for 
either a single scheduled trip or a set of contiguous trips in a 
period that will be scheduled as a group, schedule makers can 
choose a value for allowed time according to their preferred 
scheduling philosophy. Some schedule makers prefer to base 
schedules on mean running time. An alternative approach, 
aimed at improving schedule adherence, is to intentionally 
put slack into the schedule; this approach has to be coupled 
with an operating practice of holding at timepoints. With 

such a schedule, a high percentage of trips depart almost 
exactly on schedule, and the low percentage of trips that run 
late are not far behind schedule. 

The amount of slack put into a schedule is often a simple 
fraction of mean running time, with ad hoc adjustments 
based on experience. A more scientific, data-driven approach 
is to use a percentile value, or “feasibility criterion.” To illus­
trate, a feasibility criterion of 85% means setting allowed 
time equal to 85th-percentile observed running time; such 
a schedule can be completed on time 85% of the time. This 
approach is used in Chapter 5, with both the viewpoint of 
design (“tell me the 85th-percentile running time”) and 
analysis (“tell me what feasibility I’d get if I added 1 minute 
to allowed time”). 

Analysis of running time is also pertinent for determining 
how much recovery time to schedule at the end of the line. 
The time from a bus’s departure at one terminal to its next 
departure in the reverse direction has been called the “half­
cycle time”; it is the sum of running time and recovery time. 
Because the purpose of recovery time is to limit the likeli­
hood that delays encountered in one trip will propagate to 
the next, half-cycle time is based logically on a high-percentile 
value of running time. Tri-Met has begun to systematically 
revise its half-cycle times, basing them on a 95% feasibility 
criterion so that there will be only a 5% chance that a bus will 
arrive so late that it starts the next trip late. For this applica-
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Figure 2. Observed running time by scheduled trip. 
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tion, scheduled recovery time is set to be the difference between 
95th-percentile running time and allowed time. 

The chief engineer for operations analysis at Brussels’ tran­
sit agency has recently been working with a scheduling software 
vendor to develop reports to support statistically based sched­
ules. Their approach uses three parameters, as explained in this 
example: If the three parameters are 95%, 80%, and 5 min, then 
half-cycle time is set equal to 95th-percentile running time, and 
allowed time is set equal to 5 min less than 80th-percentile run­
ning time. That way, there will be an 80% chance that a trip fin­
ishes no more than 5 min late, and a 95% chance that the next 
trip can start on time. 

4.4.2 Segment Running Time 

Scheduling running time on segments, or equivalently set­
ting departure (or arrival) times at timepoints relative to the 
trip start time, can either precede or follow scheduling route 
times. One approach, common in U.S. practice, is to first 
determine segment running time based on mean observed 
running time by segment, perhaps adding a certain percent­
age for slack, and then constructing route time as simply the 
aggregation over the segments. 

Simply aggregating over segments will not work with a 
feasibility-based approach, because the sum of the parts will 
not yield a valid measure for the whole. For example, the 
sum of 85th-percentile segment running times does not 
equal a route’s 85th-percentile running time; the sum will be 
far greater, in fact. 

The Delft University of Technology has developed the Pass­
ing Moments method of extending statistically based schedul­
ing to the segment level (31). Applied at several Dutch transit 
agencies, the Passing Moments method bases timepoint sched­
ules on f-percentile completion time from each timepoint to 
the end of the line, where completion time is running time 
from a point to the end of the line, and f is the feasibility cri­
terion (e.g., 85%). Segment running times are determined by 
working backwards from the end of the line, without ever 
explicitly analyzing observed running time on timepoint-to­
timepoint segments. This approach was designed to overcome 
operators’ resistance to holding, which is the key to good sched­
ule adherence. If a schedule is written based on mean running 
time, operators know that, if they hold at a timepoint, they will 
have a 50% chance of finishing the trip late and thereby getting 
a shortened break; therefore, they are reluctant to hold. With 
85th-percentile allowed times between each timepoint and the 
end of the line, operators know that even if they hold, they have 
a high chance of finishing on time. 

The Passing Moments method is one of the scheduling tools 
described in Chapter 5. The Passing Moments method has two 
advantages compared to setting slack time simply proportional 
to mean running time. First, it is sensitive to where on the route 

delays and running time variability occur. Second, it tends to 
put less slack in the early part of the route and more in the later 
part of the route, which is a better way to distribute slack than 
simply applying it proportionately throughout. It results in 
holding buses less in the early part of the route because they 
may need that time later in the route. 

Steve Callas, the manager of Tri-Met’s AVL data analysis 
program, has suggested that if operating practice is such that 
buses do not hold at timepoints, it may be better to use a low 
feasibility criterion because running early is more harmful to 
passengers than running late. For example, a statistically 
based approach for segment-level scheduling might be to base 
departure time at a timepoint on 40th-percentile observed 
cumulative running time (i.e., from the start of the line to a 
point). That way, there will be only a 40% chance of a bus 
departing early, and those that depart early should not be very 
far ahead of schedule. 

4.4.3 Choosing Homogeneous 
Running Time Periods 

Another problem in running time analysis is choosing the 
boundaries of running time periods within which allowed time 
is constant. Establishing periods of homogeneous running 
time involves a trade-off between short periods within which 
scheduled running times match the data well versus longer 
periods of constant allowed time but greater variability. A com­
mon logic for resolving this trade-off is first to determine, for 
each scheduled trip, an ideal allowed time (e.g., mean running 
time, or 85th-percentile running time, depending on the 
desired feasibility criterion) and then to make running time 
periods as long as possible subject to the restriction that no 
more than a certain percentage of the scheduled trips in that 
period have an ideal running time that deviates by more than 
given tolerance from the suggested running time for that period. 

4.4.4 Excluding Holding (Control) Time 

Ideally, scheduling tools should use net running time, which 
excludes holding time, also called “control time.” Identifying 
what part of observed running time is holding time can be 
tricky, requiring greater data detail, and is done by only a few 
agencies with AVL-APC data. Ideally, stop records should indi­
cate both when doors open and close, and when the wheels 
start to roll, something provided by at least some APC vendors. 
If the bus is ahead of schedule, any unusual gap between door 
close time and departure time can be interpreted as holding. 

The running time analysis shown earlier in Figure 2 distin­
guishes gross from net running time. The gray bars show net 
running time; their black tops are control time, making the 
combined height equal to gross running time. Of the short 
horizontal lines representing 85th-percentile values, those 
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extending to the left of a scheduled start time are gross running 
times, and those extending to the right are net running times. 

Because in good weather holding may occur with the doors 
open, NJ Transit’s system is being upgraded to provide a record 
of how many passengers boarded and alighted every few sec­
onds (the main on-board computer frequently queries the on-
board APC analyzer while doors are open and writes records), 
allowing NJ Transit to recognize periods of inactivity even 
while the doors are open. Eindhoven’s algorithm looks for 
unusually long dwell times when the bus is ahead of schedule. 

Event codes for lift use or a fare dispute can also help iden­
tify holding time by explaining the cause for long dwell times. 

Another version of holding is still harder to detect—“killing 
time” en route to avoid being early. Data and algorithms that 
would help detect “killing time” would be valuable and are 
being developed at NJ Transit. 

4.4.5 Stop-Level Scheduling 

In many European countries including the Netherlands, 
schedules are written at the stop level. In fact, on many routes, 
every stop is a timepoint. Making (almost) every stop a time-
point has the advantage of replacing occasional large holding 
actions with frequent small ones, which are less obvious and 
irritating to passengers. 

Stop-level schedules fit well with the trend of giving cus­
tomers better information. Stops are where customers meet the 
system, and where they need to know scheduled departure 
times. Internet-based trip planners need stop-level schedules, 
as do real-time next-arrival systems (to know stop-to-stop 
expected running time). In current practice, agencies with cus­
tomer information systems like trip planners and real-time 
information systems estimate stop-level departure and run­
ning time by interpolation between timepoints; using stop-
level AVL data to develop stop-level schedules offers an obvious 
improvement. Not providing the public with stop-level sched­
ules is a good example of practice being driven by the historic 
lack of data—practice that should change as advanced tech­
nology is deployed in transit. 

Stop-level schedules are valuable for control even when 
every stop is not a timepoint. Some AVL systems display 
schedule deviation to the operator, who can use this infor­
mation all along the route to try to adjust bus speed. For 
example, in Eindhoven a small display for operators shows 
schedule deviation in units of 10 s. Such a system can be 
effective, however, only if it is based on a realistic, finely 
tuned schedule. Simply interpolating between timepoints is 
too approximate if speed between timepoints is not uni­
form, such as when the route passes major intersections. For 
operators to have confidence in, and therefore use and ben­
efit from, a schedule deviation display, they need data-based 
stop-level schedules. 

Signal priority is another application that needs stop-level 
schedules, if priority is conditional on buses being late. Con­
ditional priority is a form of operational control, pushing 
late buses ahead while holding early buses back, and to be 
effective, it needs a finely tuned schedule at every signalized 
intersection. This system has been used very effectively in 
Eindhoven (32). Conditional priority without fine-tuned 
schedules can easily devolve into either unconditional prior­
ity (because buses always arrive late) or no priority (because 
buses arrive early). To have a good control margin, schedules 
have to be written so that the probability of arriving late is far 
from the extremes of 0% and 100%. 

4.4.6 Speed and Delay Analysis 

Speed, delay, and dwell time studies are analyses that help 
support a transit agency’s efforts to improve commercial 
speed, something that benefits both operations and passengers. 
“Speed” in this context is average speed over a segment, not 
instantaneous or peak speed. A display such as given in Fig­
ure 3 showing delay by segment (or, alternatively, average speed 
by segment) helps a transit agency to identify problem loca­
tions, to monitor the impacts of actions that affect speed, and 
to monitor and document historic trends in operating speed. 
In that figure, the thin horizontal lines are individual observa­
tions of delay by segment; the box height is the 85th-percentile 
delay, and the bar inside the box indicates mean delay. Analysts 
will be interested not only in average delay, but also in how vari­
able it is, and in the likelihood of extreme values. 

A report showing delays or speeds between stops offers a 
richer, more geographically detailed view than one using 
timepoint segments. Another reason to prefer stop records as 
the basis of delay analysis is that it allows dwell time and con­
trol time (which almost always occur at stops) to be removed, 
which puts a clearer focus on the effects of the roadway and 
traffic on bus speed and delay. 

“Delay” can be defined in several ways. Two definitions of 
delay are (1) the travel time between stops minus the average 
travel time measured during non-congested periods such as 
early morning or late evening and (2) the amount of time 
spent at speeds below 5 km/h minus the time spent at stops. 
(Eindhoven uses this second definition.) To support this def­
inition of delay, an AVL system needs records of when speed 
thresholds are crossed. 

4.4.7 Dwell Time Analysis 

Transit agencies also try to improve commercial speed by 
reducing dwell time, using such measures as low-floor buses 
or changes to fare collection equipment and practices. Stop 
records with door open and close times allow agencies to ana­
lyze dwell time to determine impacts and trends. 
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Individual delays, mean, 85% 

Company: USA_H28 Departure times Dates: 2003/03/31 until 2003/04/03 Trips scheduled: 388 (Calc)

Line: 1 From: Stop  1 From: 00:00 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 340 (88%)

Route: 1 To: Stop 41 Until: 30:00 1 1 1 1 0 0 0 4 Trips excluded: 1 ( 0%)


05:00 

de
la

ys
 b

et
w

ee
n 

st
op

s 
[m

m
:s

s]

04:00 

03:00 

02:00 

01:00 

00:00 
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40


1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

stop


T
rit

ap
t 1

.0
 (

b8
2)

 li
ce

ns
e 

ho
ld

er
 is

 P
et

er
 K

no
pp

er
s,

 T
ec

hn
is

ch
e 

U
ni

ve
rs

ite
it 

D
el

ft.
 C

op
yr

ig
ht

 ©
 1

99
7-

20
06

 T
U

 D
el

ft 

Source: Delft University, generated by TriTAPT 

Figure 3. Delays by segment. 

Such an analysis should preferably be aided by passenger 
counts, in order to separate out the impact of the number of 
boardings and alightings and to identify whether any on-
vehicle congestion impact arises when vehicles are crowded. 
On-off counts, farebox transactions, and incident codes that 
reveal wheelchair and bicycle use are all useful for giving 
analysts an understanding of dwell time. 

4.5	 Schedule Adherence, 
Long-Headway Waiting, and 
Connection Protection 

Monitoring schedule adherence is a valuable management 
tool, because good schedule adherence demands both realis­
tic schedules and good operational control. It is probably the 
most common analysis performed with AVL-APC data. 

Schedule adherence can be measured in a summary fash­
ion as simply the percentage of departures that were in a 
defined on-time window, or perhaps as the percentage that 
were early, on time, and late. Standard deviation of schedule 
deviation is an indicator of how unpredictable and out of 
control an operation is; along with schedule adherence, it is 
part of a daily service quality report in Eindhoven. 

A distribution of schedule deviations provides full detail. 
Such a distribution allows analysts to vary the “early” and 
“late” threshold depending on the application, or to deter­
mine the percentage of trips with different degrees of lateness. 

A profile of schedule deviations along the line is a valuable 
tool, showing how both the mean and spread of schedule devi­
ation changes from stop to stop. Figure 4 shows two examples 
taken from Eindhoven. The heavy, black line indicates mean 
schedule deviation; the heavy, gray lines indicate 15th- and 
85th-percentile deviation. Thin lines represent individual 
observed trips. How close the mean deviation is to zero indi­
cates whether the scheduled running time is realistic. If the 
mean deviation suddenly jumps, it means the allowed seg­
ment time is unrealistic. Deviations at the start of the line are 
particularly informative: if most trips are starting late, it 
might indicate that the route’s allowed time is too long, and 
that operators are starting late to avoid running early. The 
spread in deviations, and how much it increases along the 
line, is a good indicator of operational control. The display in 
Figure 4(a) shows a poorly scheduled and poorly controlled 
route; Figure 4(b), in contrast, shows a route for which most 
schedule deviations remain in the 0- to 2-min band all along 
the line. 



34 

Individual punctuality deviations, 15%, mean and 85% 

Company: USA_H28 Departure times Dates: 2003/03/31 until 2003/04/04 Trips scheduled: 90 (Count) 
Line: 1 From: Stop 1 From: 08:00 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 81 (90%) 
Route: 1 To: Stop 41 Until: 11:00 1 1 1 1 1 0 0 5 Trips excluded: 0 (0%) 
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(a) Showing Both Systematic and Strong Random Deviation 

Individual punctuality deviations, 15%, mean and 85% 

Company: Hermes Departure times Dates: 2000/06/19 until 2000/06/23 Trips scheduled: 60 (Count) 
Line: 1 From: Station NS From: 07:00 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 50 (83%) 
Route: 1 To: Castilielaan Until: 09:00 1 1 1 1 1 0 0 5 Trips excluded: 0 ( 0%) 
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Source: Hermes (Eindhoven), generated by TriTAPT 

Figure 4. Schedule deviation along a route. 
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Because schedules are written at the timepoint level, time-
point data will support schedule adherence analysis. And 
because schedule adherence involves estimating proportions 
and extremes (detecting the percentage of early and late trips), 
the full fleet should be equipped. Finally, because schedules 
sometimes refer to arrival time as well as departure time, a data 
collection system that captures both is preferred. 

Passenger waiting time on routes with long headways is 
closely related to schedule adherence. Chapter 6 shows how 
it is possible to determine excess waiting time from the spread 
between the 2nd-percentile and 95th-percentile schedule 
deviation. 

Passengers are particularly interested in whether they can 
make their connections. Arriving 4 min late is not a problem if 
the time allowed for the transfer is 5 min, but it could be a big 
problem if the allowed time is only 3 min. However, if the 
departing trip is held—again, the convergence of schedule 
planning and operations control—other issues arise. AVL data 
is ideal for determining whether specific connections were met. 
To analyze connection protection an agency must define the 
particular connections it wishes to protect or at least analyze. 
The researchers found one transit agency using its archived 
AVL data for this purpose. Integrating control message data, 
which might include requests for holding to help a passenger 
make a connection, would permit a deeper analysis of oper­
ational control. Incorporating demand data, ideally transfer 
volumes, would make the analysis richer still. 

Connection protection analysis requires data structures 
and software that create the capacity to perform analyses 
across routes. 

4.6	 Headway Regularity and 
Short-Headway Waiting 

On routes with short headways, headway regularity is 
important to passengers because of its impact on waiting time 
and crowding. It is also important to the service provider 
because crowding tends to slow operations and because much 
of operations control is focused on keeping headways regular. 

To measure headways, data has to be captured on succes­
sive trips, making headway analysis particularly sensitive to 
the rate of data recovery, as one lost trip means two lost head-
ways. Analyzing headway when only part of the bus fleet is 
instrumented poses the logistical challenge of getting all the 
buses operating on a route to be instrumented; because of this 
challenge, Table 4 indicates headway analysis needs 100% of 
the fleet to be instrumented with AVL. 

Headways matter all along the route, not only at time-
points; therefore, stop records are best suited to headway 
analysis. (In fact, headways matter most at stops with high 
boarding rates.) However, because headways at neighboring 
stops are strongly correlated, timepoints can be thought of as 

a representative sample of stops, making it possible, although 
not ideal, to estimate headway-related measures of opera­
tional quality from timepoint data. To the degree that opera­
tors hold at timepoints, however, using them as representative 
stops becomes deceptive. 

4.6.1 Plotting Trajectories 

One much-appreciated AVL data analysis tool is a plot of 
successive trajectories on a route, as illustrated in Figure 5. Its 
format shows observed versus scheduled trajectories for a line-
direction. In the color version of this graph, each bus appears 
in a different color so that bus-specific trends (e.g., a slow 
driver) can be spotted. This kind of analysis is helpful for 
illustrating the dynamics of bunching and overtaking and for 
showing where delays begin and how they propagate. How­
ever, while this tool is helpful for giving the sense of how a 
route operates, it does not yield any numerical results and is 
suitable only for analyzing a single day’s data at a time. 

4.6.2 Headway Analysis 

A numerical analysis of headway data applies over multi­
ple days, for a route-direction and a period of the day with rel­
atively uniform headways. Typical summary results are mean 
and coefficient of variation (cv, which is standard deviation 
divided by mean) of headway. On short-headway routes, the 
Transit Capacity and Quality of Service Manual (27) assigns 
levels of service for service reliability based on values of head­
way cv. Mean headway can be compared with mean scheduled 
headway to see whether more or less service than scheduled 
was operated. In place of headway cv, Eindhoven uses a regu­
larity index, which is the mean value of the absolute headway 
deviation divided by mean headway. 

A distribution of headways is an even richer result than 
mean and cv of headway, allowing analysts to see how often 
headways were very short or very long, using any threshold 
they desire. For its rapid transit routes, the MBTA uses the 
percentage of headways greater than 1.5 scheduled headways 
as an indicator of service quality. 

Analysis procedures have to be careful in dealing with 
period boundaries. To illustrate, if the morning peak period 
ends at 9:00, a trip scheduled to pass a timepoint at 8:58 may 
pass on some days before 9:00 and on other days after 9:00. In 
an analysis of headways in a period ending at 9:00, that trip 
will sometimes be counted and sometimes not, introducing 
variability into the analysis as an artifact. 

4.6.3 Passenger Waiting Time 

On short-headway routes, passengers can be assumed to 
arrive at random; therefore, passenger waiting time can be 
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Base-file of 2003/04/10: 106 trips scheduled, 96 trips measured (91 %) 
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Source: Hermes (Eindhoven), generated by TriTAPT 

Figure 5. Observed (solid) versus scheduled (dotted) trajectories. 

determined and analyzed directly from the headway distribu­
tion. As an example, transit agencies in both Brussels and 
Paris calculate, from headway data, the percentage of passen­
gers waiting longer than the scheduled headway plus 2 min. 
As part of this project, analyses of passenger waiting time 
based on headway data were developed (see Chapter 6). 

4.6.4 Headway-Load Analysis 

Headway and load have a simultaneous effect on each 
other—longer headways lead to larger loads, and larger loads 
lead to longer headways. Analyzing headway and load 
together can lead to interesting insights. 

By analyzing headway and load together, Tri-Met created 
a method for determining to what extent an overload is 
caused by headway variation, as opposed to demand vari­
ability (28). The idea behind this approach is that overloads 
caused by headway variation should be “cured” by better 
headway control, while overloads that cannot be simply 
explained by headway variation may require a change in 
scheduled departure times or headways. Tri-Met estimates, 
for a given route-direction-period, the slope of the headway-

load relationship using a least-squared fit. Then, using that 
slope, Tri-Met normalizes the loads of individual trips to 
what the loads would have been if the headway had been as 
scheduled. 

4.7 Demand Analysis 

The sources of passenger use data are APCs and fare col­
lection systems. In this report, the only fare records consid­
ered are location-stamped transactions, because analysis of 
farebox data at the route level or higher is routine. 

4.7.1 Demand Along a Route 

Passenger demand on a route, for a given direction and 
period of the day, has three dimensions: geographic (i.e., along 
the route); between scheduled trips (i.e., how is the 7:15 trip 
different from the 7:30 trip); and between days. Most analysis 
views aggregate over two dimensions and analyze the remain­
ing one; it is also possible to aggregate over only one dimen­
sion, showing the other two in the analysis, as the examples 
will show. 
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The geographic dimension of demand is shown in a vol­
ume profile or load profile, depending on whether results 
are expressed in passengers per hour (volume) or passengers 
per trip (load); another view shows ons and offs by stop. 
One graphical format, developed by Delft University 
researchers and illustrated as the lower step line in Figure 6, 
shows not only mean segment loads, but also mean offs, ons, 
and through load at each stop in a single profile. The upper, 
gray step function indicates 85th-percentile segment loads, 
thus adding the dimension of day-to-day variation. This 
report has already pointed out the importance of extreme 
values of load for both passenger service quality monitoring 
and scheduling. Also shown in Figure 6 for each stop, as well 
as for the route as a whole, are box and whiskers plots of offs 
(just to the left of each stop) and ons. The box extends from 
the 15th percentile to the 85th percentile; a bar indicates the 
mean value; and the X above the box indicates the maxi­
mum observed value. 

Analysis of demand along a route is necessary for under­
standing where along the route high loads occur. It supports 
decisions about stop relocation and installing stop amenities, 
and routing and scheduling actions that affect some parts of 
a route differently from others, such as short turning, zonal 
service, and limited stop service (33). 

4.7.2 Demand Across the Day and 
Scheduling Headway and 
Departure Time 

By abstracting the geographical dimension using trip sum­
mary measures such as total boardings, maximum load, and 
passenger-miles, one can focus on the other two dimensions 
of demand, variation within a day and between days. Figure 7 
shows how demand varies between scheduled trips, with 
scheduled trips on the horizontal axis and one measure of 
demand, in this case mean boardings, on the vertical. In other 
versions of this graph (not shown), day-to-day variation is 
presented by showing a scatterplot (horizontal whiskers) or 
selected percentile values, which allows one to see extreme 
values of load that are important to both scheduling and 
operational control. Using established thresholds, trips can be 
categorized and counted by degree of crowding. 

In Figure 7, four of the scheduled trips in the period ana­
lyzed had no valid APC data. They are represented with a 
large X and a more darkly colored bar whose height is set 
equal to the average of the nearest trip before and after it with 
valid counts. The issue of imputing values to missing data is 
discussed in Chapter 11. 

Passenger-miles is another summary measure over a route, 
being the product of the segment load multiplied by the 
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Figure 6. Load and on/off profile. 
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Balanced unlinked passenger trips per vehicle trip (estimated mean 67.9) 

Company: HTM Departure times Dates: 2001/11/05 until 2001/11/08 Trips scheduled: 244 (Count) 
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Figure 7. Boardings by trip across the day. 

segment length. When divided by overall route length, this 
total indicates the average vehicle occupancy along the route. 
Special considerations relative to measuring passenger-miles 
are covered in Chapters 8 and 9. 

An analysis of demand variation across the day supports 
scheduling, which, in part, sets headways and departure times 
so as to achieve target loads. There remains the opportunity 
to develop design tools for scheduling that take advantage of 
large APC sample sizes to estimate a demand profile across 
the day. Using passenger counts combined with measured 
headways, and averaging over many days, one should be able 
to derive the passenger arrival rate as a function of time. 
Combining these arrival rates in small (e.g., 1-min) time slices 
using a reference frame that moves at the speed of a bus allows 
one to predict the peak load on a trip based on its departure 
time and the departure time of its leader. 

With a minute-by-minute load profile across the day, one 
valuable tool would be able to find periods of homogeneous 
demand within which a constant headway can be used, anal­
ogous to scheduling tools that seek periods of homogeneous 
running times. Another valuable tool would not assume con­
stant headways at all, but would select departure times that 
balance loads between trips, accounting for how demand 
rates vary across the day, as suggested by Ceder (34). Tools 
of this sort are currently under development for the transit 
agency of the Hague. 

In the future, there may be scheduling tools that account 
for within-day and between-day variation in demand, as well 
as within-day and between-day variation in running time, in 
order to design route schedules that respond to how both 
demand and running times vary across the day, using statis­
tical methods to limit the probability of overcrowding and 
insufficient recovery time. 

4.7.3 Passenger Crowding 

There is a strong relationship between vehicle crowding 
and passengers’ experience of crowding, but the perspectives 
are different. For example, if half the trips are empty and half 
are overcrowded, then only 50% of the trips are overcrowded, 
yet 100% of the passengers experience an overcrowded trip. 
Measures of crowding from the passenger perspective are dis­
cussed in Chapter 7. 

4.7.4 Pass-Ups and Special Uses 

Operator-initiated incident codes used to register such events 
as pass-ups, wheelchair customers, and bicycle customers can 
be used to analyze special demands and events along a route 
or across the day. Being able to locate them along a route 
might be useful for load analysis, running time analysis, and 
facility planning. 
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4.8	 Mapping 

Equipped vehicles can serve as GPS probes whose archived 
AVL data is used to improve a transit agency’s base map. For 
example, if buses stop often at a location not indicated on the 
base map as a stop, then a stop may be missing on the base 
map (perhaps because it has been informally added by oper­
ators); this data can be used to help locate both permanent 
and temporary stops. 

A more explicit use of buses as GPS probes is to intention­
ally use them to map a bus’s path through a new shopping 
center or subdivision. For this application, the on-board com­
puter has to be set to make frequent interstop records. An 
Israeli APC supplier includes a learning mode that allows an 
on-board surveyor, seated beside the operator and holding a 
laptop computer, to create geocoded records with codes and 
comments at points of interest (e.g., where a bus makes a 
turn) to help map the bus’s path. 

4.9	 Miscellaneous 
Operations Analyses 

The availability of archived AVL-APC data creates oppor­
tunities for analysis of many other aspects of operations, of 
which five are listed in Table 4 and discussed in this section. 
Other analysis opportunities will undoubtedly be discovered, 
highlighting the need for AVL-APC databases to support 
exploratory and new analyses. 

4.9.1 Acceleration and Ride Smoothness 

One aspect of service quality that might be measured with 
an advanced AVL system is the smoothness of the ride. Pas­
sengers value a smooth ride, without jerky accelerations or 
decelerations, while avoiding unsafe speeds. At present, tran­
sit agencies in Paris and Brussels use externally contracted 
surveyors called “mystery shoppers” to rate quality of service 
in several categories, including ride smoothness; their ratings 
are, of course, subjective. Very frequent records of speed 
would permit an objective measurement of linear speed, 
acceleration, and deceleration; swerving and bouncing also 
could be measured if accelerometers in three directions were 
integrated into the system. 

4.9.2 Mechanical Demand 

AVL data may permit analysts to estimate mechanical 
demands on buses in order to relate them to vehicle perfor­
mance and maintenance. For example, combining measure­
ments of vehicle acceleration and passenger load with GIS 
information on roadway grade allows estimation of the trac­
tive and braking forces required, which then could be analyzed 

to find relationships to fuel consumption, brake wear, or engine 
maintenance needs. Another suggested measure of mechani­
cal demand that could be determined from interstop AVL 
records is the number of acceleration/deceleration cycles. 

4.9.3 Terminal Movements 

Interstop GPS records might be used to analyze vehicle 
movements at terminals, which may be of interest at busy 
terminals with capacity, safety, or efficiency issues. A better 
understanding of terminal movements can also lead to better 
determination of arrival and departure times, which are crit­
ical for schedule analysis. 

4.9.4 Control Messages 

While operator-initiated messages (e.g., indicating pass-
ups or bicycle use) are customarily coded in a manner that 
permits numerical analysis, control messages sent by radio to 
bus operators are not customarily so coded. To the extent they 
could be coded for common commands such as hold for the 
schedule or hold for a connection, they would allow one to 
analyze where and when those control messages are used, 
account for their impact on running time, and analyze their 
effectiveness. 

4.9.5 Operator Performance 

Finally, published (28) and unpublished studies by Tri-
Met using AVL-APC data indicate that much of the variance 
in running time and schedule adherence can be explained by 
operator behavior. An analysis of performance by operator 
could be a valuable tool for training operators and for exper­
imenting with different methods of supervision and con­
trol. To account for the bus bunching phenomenon, an 
operator’s performance on short-headway routes should 
account for the position of its leader. Performance elements 
can include schedule deviation (especially at dispatch), run­
ning time, layover time, headway maintenance and bunch­
ing, and more. 

Correlations between data items may reveal interesting 
operating patterns. Do operators that are beginning to run 
early intentionally slow down, and do operators that are getting 
behind speed up? Do operators drive differently when they 
have a heavy load or after they depart the terminal late? Being 
able to identify individual operators may reveal operator-
specific patterns or relationships between running time and 
operator experience (both overall and on the specific route). 
Uncovering operating patterns like this can be useful for plan­
ning both schedules and methods of supervision and training. 

Operator performance must be analyzed with careful respect 
for operator acceptance and safety. If used for discipline, data 
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for such analyses may be in danger of sabotage. Agencies may 
not want to use the AVL data directly to discipline operators, 
but it can certainly be used to help dispatchers and supervi­
sors better target their efforts at conventional discipline. For 
example, some agencies report that if data indicates a recur­
ring problem with a particular trip starting late, a supervisor 
might be requested to observe. 

More seriously, safety can be compromised if operators 
are punished for getting behind schedule. Such concerns do 
not necessarily mean that operators should not be given 
feedback on their performance. Experience with data col­
lected automatically in Rotterdam’s tram operation shows 
that operators may enjoy getting a written record of their 
performance—for the first time operators had written evi­
dence to show their family what a good job they were doing 
in staying on schedule. 

4.10 Higher Level Analyses 

This section discusses analyses of AVL-APC data that cover 
extended periods of time or multiple routes. 

4.10.1 Comparisons and Aggregations 

By comparing results of analyses done over selected dates, 
AVL-APC data can be used in before–after studies or to ana­
lyze operations during special events or weather conditions. 

Trends analysis can be seen as simply an extension of the 
before–after study, but it suggests a need for storing higher 
level summaries in a separate database. An example is a 
monthly systemwide report on schedule adherence. A transit 
agency might specify measures that it wants to follow over 
time, calculate those measures periodically (e.g., every month) 
from the detailed AVL-APC data archive, and save those period 
summaries in a smaller, higher level database where they can 
be used for trends analysis. 

Many analyses that involve aggregation or comparison over 
routes can benefit from AVL-APC data. One example is a 
periodic route performance comparison, which may include 
items such as on-time performance or total boardings along 
with data from other sources such as scheduled vehicle-hours 
or farebox revenue. Another example is making annual sys­
temwide passenger-miles estimates for reporting to the NTD, 
which can be made by aggregating mean passenger-miles per 
trip over all the trips in the schedule (see further discussion 
in Chapter 9). 

These applications suggest having an automated process of 
periodically calculating and storing summary measures in 
higher level tables. 

4.10.2 Transfers and Linked Trips 

While APCs provide the data needed to analyze demand on 
a route, they do not capture the information needed to iden­
tify linked trips or transfers. However, if fare media include 
unique IDs (as is the case with both magnetic cards and smart 
cards), stop- and time-stamped farebox transactions permit 
analysis of transfers and linked trips. Linked-trip analysis is 
especially important in Canada, where linked trips are the 
standard measure of transit use. 

Despite fare systems not capturing alightings by ID code, 
there have been successful efforts in New York, Chicago, and 
Dublin to determine transfers and linked-trip origins and 
destinations by tracking where a fare ID is next used to enter 
the system (18, 19, and unpublished work). This area is prom­
ising for future research. 

4.10.3 Headways and Other Measures on 
Shared Routes 

Many transit networks have trunks served by multiple lines 
or multiple patterns (branches) of a line. Some measures of 
activity on a trunk are simple aggregations of stop-level meas­
ures; examples are schedule adherence and passenger load. For 
these purposes, all that is needed is an interface allowing one 
to select the appropriate set of stops and patterns. However, 
headways on a shared route can only be determined by going 
back to original stop or timepoint records, including data from 
all the trips serving the trunk, and linking them where their 
respective route joins and leaves the common trunk. This pro­
cedure demands a special data structure for a route trunk, 
something developed as part of this project (see Section 11.5). 

4.10.4 Geographic Analyses 

Transit agencies often want to do route-independent analy­
ses based on geography, including both demand analysis (how 
many boardings occur in a certain area) and service quality 
analysis (what is the on-time performance in a certain area). 
Integrating AVL-APC data with GIS models requires data 
structures that link geographic locations to stops and route 
segments, and a process to extract and aggregate results for 
the selected stops and segments. 

For demand modeling, methods are needed to convert on-
off counts at stops into trip generation rates in small traffic 
analysis zones. However, this specialized procedure could be 
driven equally by manual or automatically collected data; the 
challenge for APC data analysis is to export demand rates by 
stop for only a selected period of the day. 
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C H A P T E R  5  

Tools for Scheduling Running Time


This chapter describes running time analysis and scheduling 
tools that were developed and/or improved as part of this proj­
ect. They use statistical methods to create running time sched­
ules, taking advantage of the large sample sizes afforded by AVL 
data, and are part of TriTAPT software developed by researchers 
at the Delft University of Technology. The primary tools 
described in this chapter are packaged as two integrated analy­
ses: the first divides the day into running time periods and 
establishes route running times for each period, and the sec­
ond allocates running time over a route’s segments. If the cap­
tured data allows the identification of control (holding) time, 
these running time tools will be applied to the net running 
time, which excludes control time. 

Both analyses use graphical reports or screens, behind which 
are exportable tables generated from AVL data. They apply to a 
single route-direction, using data from any number of days. 

5.1	 Running Time Periods and 
Scheduled Running Time 

The first analysis, called “homogeneous periods,” is a semi-
automated, interactive tool for establishing running time 
periods (periods of constant scheduled running time) and 
scheduled running times. This tool allows the user to exam­
ine the feasibility of the current set of scheduled running 
times or a user-proposed set of running times, and it also sug­
gests running times and periods automatically. 

5.1.1 Feasibility of the Current Timetable 

Figure 8 shows an analysis of the current running times (ver­
tical axis) and running time periods across the day (horizontal 
axis). Features include 

•	 A statistical summary of observed running time for each 
scheduled trip, showing mean (gray bar height), two per­

centile values (jagged lines, set for this figure at 50th and 80th 
percentile), and maximum observed running time (arrow); 

•	 Current running time periods, bounded by heavy vertical 
lines, with a similar heavy horizontal line indicating current 
allowed time; and 

•	 Suggested allowed times (thick, gray horizontal lines), about 
which more will be said later. 

At the bottom of the rectangle for each running time period 
is a calculated value called feasibility; it represents the percent­
age of observed trips in the running time period whose run­
ning time was less than or equal to the current allowed time. 

5.1.2 Suggesting New Running Times 
and Running Time Periods 

In the graph shown in Figure 9, a set of allowed times and 
running time periods suggested automatically by the program 
are shown and analyzed. A feasibility value is shown for each 
suggested period. Current allowed times are also visible in the 
background as solid horizontal line segments. 

The algorithm that suggests running time periods and 
allowed times seeks a compromise between trying to closely 
match the data and having periods as long as possible in order 
to make scheduling and control simpler. TriTAPT offers users 
two algorithms for selecting homogeneous periods: 

•	 For one algorithm, users set two percentile limits, for exam­
ple, 50% and 80% (the values used in this section’s figures). 
The algorithm then seeks periods for which a whole-
minute running time can be suggested that lies between the 
50th-percentile and 80th-percentile observed running time 
for (almost) every trip in that period. 

•	 For the second algorithm, users specify a single feasibility 
value and a tolerance–for example, 85% and 2 min. Then, 
the algorithm seeks periods for which a running time can be 
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Suggested periods based on observed net route section times (feasibility range 50% - 80%) 

Company: TUD Departure times Dates: 2004/02/17 until 2004/09/10 Trips scheduled: 750 (Calc) 
Line: 1 From: Stop 1 From: 07:00 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 568 (76%) 
Route: 1 To: Stop 44 Until: 20:00 2 2 2 2 2 0 0 10 Trips excluded: 36 ( 5%) 
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Figure 8. Analysis of current running times. 

Suggested periods based on observed net route section times (feasibility range 50% - 80%) 

Company: TUD Departure times Dates: 2004/02/17 until 2004/09/10 Trips scheduled: 750 (Calc) 
Line: 1 From: Stop 1 From: 07:00 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 568 (76%) 
Route: 1 To: Stop 44 Until: 20:00 2 2 2 2 2 0 0 10 Trips excluded: 36 ( 5%) 
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Figure 9. Analysis of automatically suggested running times and periods. 
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suggested that lies within 2 min of the 85th-percentile makers the power to combine design with analysis. As men-
observed running time for (almost) every trip in that period. tioned earlier, the algorithms that suggest homogeneous peri­

ods and running times are “compromisers,” not “optimizers.” 
These algorithms include various rules for expanding, com- They follow reasonable, systematic rules for determining run­

bining, and splitting periods. Other running time analysis pro- ning times, but given that any solution is an imperfect com­
grams have similar heuristic algorithms. To the researcher’s promise, users may be able to find solutions they prefer. For 
knowledge, there is no “optimal” formulation for the design example, these algorithms do not consider whether adding a 
of running times and running time periods. minute of running time might require an extra bus, nor do 

they consider the burden on passengers of changing the pub­

5.1.3 “What-If” Experimentation with Period lished schedule. Schedule makers can bring this kind of knowl-

Boundaries and Allowed Times edge into the design process; they therefore need the flexibility 
to modify suggested running times and have the program 

This tool allows users to modify both period boundaries analyze what will happen. 
and allowed times. The starting point for experimentation 
can be either the current schedule or the running time peri- 5.2 Determining Running Time
ods and allowed times suggested by the program (based on Profiles Using the Passing 
user-selected parameters). Graphical tools allow the user to Moments Method 
simply drag period boundaries right or left, split a period, com­
bine periods, and drag proposed allowed times up or down; in Once running times for a given route (or route segment) 
response to any change, the program recalculates each period’s and period of the day are selected, the next step is to divide the 
running time feasibility. Figure 10 shows a user-created set of chosen route (or segment) time by (smaller) segments, creat­
running time periods and running times and the resulting ing a scheduled running time profile (cumulative allowed time 
feasibilities for the same dataset as the previous two figures. from the start of the line). This step must be performed sepa-

Having a program automatically suggest new periods and rately for each running time period. For example, take the 
allowed times based on user-supplied parameters, while also period 8:06 to 8:42, for which the selected allowed time in Fig-
allowing schedule makers to experiment with and propose ure 10 was 64 minutes. In the graph shown in Figure 11, the 
their own set of periods and running times, gives schedule suggested running time profile is shown as the heavy line with 

Suggested periods based on observed net route section times (feasibility range 50% - 80%) 

Company: TUD Departure times Dates: 2004/02/17 until 2004/09/10 Trips scheduled: 750 (Calc) 
Line: 1 From: Stop 1 From: 07:00 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 568 (76%) 
Route: 1 To: Stop 44 Until: 20:00 2 2 2 2 2 0 0 10 Trips excluded: 36 ( 5%) 
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Figure 10. Analysis of user-proposed running times and periods. 
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Passing moments (Attainability = 69.7%, net time = 64:00) 

Company: TUD Departure times Dates: 2004/02/17 until 2004/09/10 Trips scheduled: 40 (Calc) 
Line: 1 From: Stop 1 From: 08:06 Mon Tue Wed Thu Fri Sat Sun Total Trips used: 31 (78%) 
Route: 1 To: Stop 44 Until: 08:42 2 2 2 2 2 0 0 10 Trips excluded: 1 ( 3%) 
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Figure 11. Segment running times or Passing Moment. 

asterisks at each stop. To show the relation of the suggested from each timepoint to the end of the line is set equal to the 
running time profile to observed running time data, this for- 70th-percentile completion time from that timepoint. If run-
mat includes a light line for every observed running time in ning time data is available at the stop level, a data-driven, 
the selected period, anchored to a start at time 0. stop-level running time profile will be created, which can be 

The suggested running time profile uses Muller’s Passing valuable for passenger information, operational control, and 
Moments method, setting the running time from a timepoint traffic signal priority. 
to the end of the line equal to the f-percentile completion time Running time periods and running times accepted in the 
from that timepoint, where f is the feasibility (or attainabil- homogeneous periods analysis are stored in memory and listed 
ity) of the overall route time. For example, in Figure 11 the in a menu, so that users can choose them one at a time to cre­
overall route time has 70% feasibility, and so running time ate running time profiles using the Passing Moments tool. 
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C H A P T E R  6  

Tools for Analyzing Waiting Time


Poor service reliability affects both passenger waiting time 
and crowding. However, traditional methods of analyzing 
passenger waiting time and crowding, developed in the 
data-poor age before AVL and APCs, do not account well 
for the impacts of irregularity upon passenger experience 
with respect to crowding and waiting time. This chapter 
presents some methods for analyzing waiting time using 
AVL data; the next chapter presents methods for analyzing 
crowding using APC data. These methods have been applied 
in spreadsheet files, which serve as prototypes of analysis 
tools that can be applied in AVL-APC data analysis soft­
ware. (The spreadsheet files are available on the project 
description web page for TCRP Project H-28 on the TRB 
website: www.trb.org.) 

6.1	 A Framework for Analyzing 
Waiting Time 

The researchers developed a new framework for analyzing 
waiting time, one that accounts for how uncertainty in head­
way and schedule deviation affects not only how long passen­
gers wait on the platform, but also how much time they have to 
budget for waiting. That framework is described with mathe­
matical justification in Furth and Miller (8). This section out­
lines the framework’s main features. Then, they are applied to 
short-headway service in Section 6.2 and to long-headway 
service in Section 6.3. 

6.1.1 Platform Waiting Time 

AVL captures data on headways and bus departure times. 
By making reasonable assumptions about when passengers 
arrive, and assuming the first bus is not too full for them to 
board, mean waiting time and the distribution of waiting 
time can be determined. “Platform waiting time” is the 
term used for the time passengers actually spend waiting at 
a stop. 

6.1.2 Budgeted and Potential Waiting Time 

AVL data can also be used to estimate how long passengers 
have to budget for waiting. To have a small probability of 
arriving late at their destination, passengers must plan on 
waiting longer than the average platform waiting time. While 
passengers vary in their willingness to accept the risk of arriv­
ing late at their destination, a reasonable working assumption 
is that passengers will accept a 5% risk of arriving late. There­
fore, the 95th-percentile waiting time can be interpreted as 
budgeted waiting time. 

Budgeted waiting time can be divided into two parts: the 
part that passengers actually spend waiting and the remainder, 
called “potential waiting time.” For example, if a passenger 
budgets 10 min for waiting, but the bus arrives after only 4 min, 
the 6-min difference is the potential waiting time. Potential 
waiting time is not spent on the platform; it is spent at the des­
tination end of the trip, where the traveler will arrive 6 min 
earlier than budgeted. However, because it was set aside for 
waiting, that time cannot be used as freely as if it had not been 
so encumbered; therefore, it still represents a cost to passengers. 
For example, passengers going to work in the morning could 
not spend their potential waiting time sleeping a few minutes 
later or staying at home with the kids a few minutes longer. 
Potential waiting time is a hidden cost associated with waiting, 
manifested in passengers having to start their trips earlier than 
they would otherwise have to if waiting time were certain. 

6.1.3 Equivalent Waiting Time 

Equivalent waiting time is a weighted sum of platform and 
potential waiting time that expresses passengers’ waiting cost 
in equivalent minutes of platform waiting time. If the weight 
given to potential waiting time is 0.5, equivalent waiting time 
is given by 

W	 = W + 0 5. �Wequivalent platform potential 

http://www.trb.org
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The coefficient 0.5 expresses the cost of a minute of potential 
waiting time in terms of platform waiting time. Ideally, this 
parameter value should be estimated based on market research 
into traveler behavior and preferences. However, 0.5 is a rea­
sonable value consistent with the body of travel demand 
research (8), lying between 0 (it has a real cost) and 1 (its unit 
cost should be less than that of platform waiting), and large 
enough to explain part of the reason that demand models typ­
ically assign large relative coefficients to waiting time. 

When the unit cost of potential waiting time is 0.5, average 
equivalent waiting time can also be expressed as the average 
of mean platform time and budgeted waiting time: 

Wequivalent = 0 5. Wplatform + W0 95  )( . 

where W0.95 is the 95th-percentile waiting time. 

6.1.4 Service Reliability and Waiting Time 

The transit industry has lacked a measure of service relia­
bility that is measured in terms of its impact on customers. 
Traditional measures of service reliability such as coefficient of 
variation (cv) of headway and percentage of on-time depar­
tures are valid descriptors of operational quality, but they do 
not express reliability’s impact on passengers. For example, 
how much is it worth to passengers to reduce the headway cv 
from 0.3 to 0.2, or to improve schedule adherence from 80% 
to 90%? Because a method of measuring reliability’s impact 
on passengers has been lacking, waiting time has been under­
estimated, and service reliability undervalued. 

Poor service reliability affects passengers mainly by (1) mak­
ing them wait longer and (2) making them have to budget 
more time for waiting. (It can also cause crowding, but that is 
something that can be measured directly.) Equivalent waiting 
time is a measure that accounts for both of those impacts. 
Because it includes budgeted waiting time, it is particularly 
sensitive to service reliability. It is measured in minutes of pas­
senger waiting time, something that can be economically eval­
uated and compared with, for example, the cost of improving 
service reliability, or the cost of a headway reduction as an 
alternative means of reducing passengers’ waiting time. 

6.1.5 Ideal and Excess Waiting Time 

Passenger waiting time can be divided into two parts: ideal 
and excess. Ideal waiting time is the average waiting time that 
would result from service exactly following the schedule (35); 
excess waiting time is the difference between actual and ideal 
waiting time and is, therefore, the component of waiting time 
that can be attributed to operational issues. Separating excess 
from ideal waiting time provides a good idea of the quality of 
operations and the extent to which passenger service could be 
improved by improving service reliability. Excess waiting time 

is also a good measure to use for evaluating contracted ser­
vice, where the contractor is responsible for operations but 
not planning; Transport for London uses this measure with 
its contract bus operators. 

Excess waiting time can be a negative value; such a situa­
tion could occur, for example, if more service is operated than 
scheduled. 

Until now, the concept of ideal and excess has been applied 
only to mean waiting time; however, it also applies to budgeted 
and equivalent waiting time, as the following sections show. 

6.2	 Short-Headway Waiting 
Time Analysis 

6.2.1 Distribution of Waiting Time 

For transit service with short headways, passengers can be 
assumed to arrive independent of the schedule, effectively in a 
uniform fashion. If passengers are also assumed to depart with 
the first vehicle departure after their arrival (i.e., assuming 
there are no pass-ups), the complete distribution of waiting 
time can be determined from the set of observed headways. 
This determination is a step beyond the well-known formula 
for mean waiting time: 

2E[ ]W = 0 5E H 1 cvH )	 ( )  .  [ ]( +	 1 

where E[W] and E[H] are mean waiting time and mean head­
way, respectively, and cvH is the coefficient of variation of head­
way, which is the standard deviation of headway divided by the 
mean. (When applying this formula to a set of observed head-
ways, one should use the “population standard deviation,” 
dividing by n = number of observations, rather than sample 
standard deviation, which divides by n − 1). 

Furth and Muller (8) explain how the distribution of 
passenger waiting time can be derived for both a theoretical 
headway distribution and for an arbitrary set of observed 
headways determined from AVL data. The method is best 
explained by an example. Suppose a route’s scheduled head­
way is 8 min, and six buses were observed with the following 
headways (in minutes): 

Example 1 observed headways : {  , , , ,  ,4 5 7  9 10 13}} minutes  

With those headways, assuming passengers arrive at random 
and board the first bus, the waiting time distribution is as 
shown in Figure 12. At each observed headway, the waiting 
time distribution steps down in equal steps. Also shown for 
comparison is the ideal waiting time distribution (i.e., the 
waiting time distribution that would occur if service had per­
fectly regular 8-min headways). 

In a waiting time distribution, the 95th-percentile waiting 
time is the value on the horizontal axis that divides the wait­
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Figure 12. Passenger waiting time distribution for 
Example 1. 

ing time distribution into two parts, with 95% of the area to 
the left and 5% to the right. For Example 1, the 95th-percentile 
waiting time equals 10.6 min for the actual headway distribu­
tion; for the ideal headway distribution, 95th-percentile wait­
ing equals 7.6 min. 

6.2.2 Waiting Time Summary 

While the graph of the distribution of waiting time helps 
explain the relationship between headways and waiting time, 
it is not a useful format for management reporting or service 
quality monitoring. Two other formats are therefore offered. 

The first format for summarizing passengers’ waiting time 
experience is a summary of platform, budgeted, and equiva­
lent waiting time, as shown in Figure 13. Optionally, the user 
can show how waiting time breaks out between ideal and 
excess waiting time. For example, the 10.6 min of budgeted 
waiting time divides into an ideal budgeted waiting time of 
7.6 min and an excess budgeted waiting time of 3.0 min. Like­
wise, equivalent waiting time, being 7.6 min, divides into ideal 
and excess parts of 5.8 and 1.8 min, respectively. Therefore, 
irregularity on this route costs passengers the equivalent of 
1.8 min of waiting time. 

This format can also be used in a before–after comparison, 
as shown in Figure 14. Figure 14 is based on a different exam­

12.00 

10.00 

8.00 

6.00 

4.00


(values represented by


budgeted waiting time 

equivalent waiting time 

platform waiting time 

2.00 
cumulative heights) 

0.00 
actual ideal excess

waiting waiting waiting


Figure 13. Passenger waiting time summary for 
Example 1. 
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Figure 14. Passenger waiting time comparison for 
Example 2. 

ple, for which scheduled headways in the period of interest 
are not all equal: 

Example 2 scheduled headways: 
{5, 8, 8, 8, 8,, 8, 8, 8, 9, 9, 9} minutes 

With Example 2, two datasets of 100 observed headways each 
are compared: Case a, with high irregularity (headway cv = 
0.52), and Case b, with low irregularity (headway cv = 0.26). 
(Actual data values can be found in the spreadsheet file on the 
project description web page for TCRP Project H-28 on the 
TRB website: www.trb.org.) The waiting time summary in Fig­
ure 14 shows that, with the reduction in irregularity, mean plat­
form waiting falls only a little, from 5.1 to 4.3 min; budgeted 
waiting time falls much more, from 12.0 to 9.0 min. Combin­
ing these waiting components under the composite measure 
equivalent waiting time shows that the reduction in irregular­
ity saves passengers the equivalent of 1.9 min of waiting time— 
a result that, if service reliability were not accounted for, would 
require a headway reduction of almost 4 min, an action that 
would double operating cost. 

This example illustrates how the measures budgeted wait­
ing time and equivalent waiting time reflect the impact of 
service reliability on passengers. 

6.2.3 Percentage of Passengers 
with Excessive Waiting Times 

A second useful reporting format shows the percentage of 
passengers in various waiting time ranges or “bins.” This for­
mat can be used to support a service quality standard such as 
“no more than 5% of passengers should have to wait longer 
than (scheduled headway + 2) minutes.”In its program for cer­
tifying bus service quality, the French quality institute AFNOR 
Certification applies a standard in this format (36). Transit 
agencies in Paris, Brussels, and Lyon are among those with at 
least some bus lines certified under this standard. 

http://www.trb.org
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Calculations for the Example 1 headway data are shown in 
Table 5. These calculations use a three-bin format, with thresh­
olds of 9 and 11 min, which are 1 min and 3 min beyond the 
scheduled headway, respectively; the waiting times represented 
by these bins might be interpreted as “normal,”“excessive,” and 
“unacceptable.” The last observed headway in the table, which 
is 13 min long, best illustrates the calculation. Of the passen­
gers arriving during the 13 min, those arriving in the first 
2 min of the headway wait 11 min or longer; those arriving in 
the next 2 min wait 9 to 11 min; and those arriving in the last 
9 min wait between 0 and 9 min. Overall, this table shows that 
4.2% of passengers wait longer than 11 min. 

This format can also offer insights when comparing wait­
ing time distributions. Table 6 compares the percentage of 
passengers with excessive and unacceptable waiting times for 
Example 2, Cases a and b. As Table 6 shows, the improved reg­
ularity of Case b has dramatically reduced the percentage of 
passengers with excessive and unacceptable waiting times. 

6.3	 Long-Headway Waiting 
Time Analysis 

For routes with long headways, most passengers time their 
arrival at the platform to make a targeted departure. Sched­
ule adherence or schedule deviation is critical to determining 
passengers’ waiting time. Let V equal the schedule deviation 
of the trip a passenger is trying to meet, defined by 

V = departure time − scheduled departure time 

Early departures are represented by negative values of V. 
As long as schedule deviations are small compared to the 

scheduled headway, the number of passengers using a given 
trip will be independent of its schedule deviation or headway. 
Therefore, unlike with short-headway service, the experience 
of passengers is the same as the “experience” of buses (i.e., if 
15% of the buses were late, it is fair to say that 15% of the pas­
sengers had to wait for buses that were running late). 

Table 5. Excessive waiting time calculation. 

Waiting Time (Bin Width) 

Headway Normal Excessive Unaccept. Total 
0 to 9 min 9+ to 11 min > 11 min 

(9 min) (2 min) (1000 min) 

4.0 4.0	 4.0 

5.0 5.0 	 5.0 

7.0 7.0 	 7.0 

9.0 9.0 	 9.0 

10.0 9.0 1.0	 10.0 

13.0 9.0 2.0 2.0 13.0 

Total 43.0 3.0 2.0 48.0 

Percentage 89.5% 6.3% 4.2% 100% 

Table 6. Passenger waiting time distribution for 
Example 2. 

Case Normal 
0 to 9 min 

Waiting Time 

Excessive 
9+ to 11 min 

Unaccept. 
> 11 min 

Total 

a 84.1% 8.2% 7.7% 100% 

b 94.8% 4.4% 0.8% 100% 

Therefore, distribution of schedule deviation is a measure of 
operational performance that relates closely with passenger 
experience. For interpreting schedule adherence as passenger 
experience, it is helpful to distribute schedule deviations into 
more than just the traditional three bins of “early,” “on time,” 
and “late.” For example, the user might specify thresholds at 
−1, 0, 3, 5, and 10 min and determine the percentage of trips, 
and therefore the percentage of passengers experiencing 
trips, in bins interpreted as unacceptably early, less than a 
minute early, on time (0 to 3 min), a little late, quite late, and 
unacceptably late. 

As valuable a measure as schedule adherence is, it still does 
not express an impact on passengers. The researchers were 
able to extend the waiting time framework to long-headway 
service in order to determine how much excess waiting time 
is caused by service unreliability. 

6.3.1 Waiting Time Components 

Passengers are assumed to have a target arrival time and to 
arrive at or before this time. The target is set to give passengers 
a very low probability of missing the bus. Therefore, the target 
is an extreme value at the lower end of the schedule deviation 
distribution; the researchers use the 2nd-percentile schedule 
deviation (V0.02), meaning the time by which only 2% of buses 
will have already departed. Passengers following this policy 
will miss the bus once every 50 trips, or less (depending on 
how long before the target they arrive). 

Two components of waiting time are not avoidable and are, 
therefore, part of ideal waiting time, not excess waiting time. 
Because they depend only on the planned headway, they are 
not a subject of AVL data analysis; nevertheless, for com­
pleteness, they are mentioned here: 

•	 Schedule inconvenience: a well-known form of hidden 
waiting time that arises from departures or arrivals not 
being scheduled when passengers want to travel. It is man­
ifested in passengers who are going to work arriving before 
their work start time because the next bus would get them 
there too late. Likewise, after work, passengers may consis­
tently have time to kill between leaving work and the next 
scheduled departure. 

•	 Synchronization time: the cost, in equivalent minutes of 
waiting, of ensuring that one is at the station by the target 
arrival time. To be sure of hitting that target, many passen­
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gers will arrive early because of uncertainty in access time, 
the limits of human punctuality, and risk aversion. The 
waiting time between when passengers arrive and the ideal 
arrival time is part of synchronization time. 

Schedule inconvenience and synchronization time are 
unavoidable; they can be “blamed” on planning, as they are 
the inevitable consequence of designing a service with a long 
headway. In contrast, random waiting time that occurs after 
the ideal arrival time is due to service unreliability and is, 
therefore, excess waiting time. Its components, and their 
relation to schedule deviations, are shown in Figure 15. 
Excess platform waiting runs from the passengers’ target 
arrival time to the bus’s actual departure time. Excess bud­
geted waiting time runs from the target arrival time to the 
95th-percentile schedule deviation (V0.95). As in the case of 
short-headway waiting, passengers cannot plan on being 
picked up at the average departure time; they have to budget 
for an extreme value. The researchers assume they budget 
for the 95th-percentile schedule deviation; with that value, 
passengers will arrive late 5% of the time. 

Excess budgeted waiting time, being the spread in the sched­
ule deviation distribution between V0.02 and V0.95, can be 
thought of as the time between the earliest likely and latest likely 
departure times. The greater the service unreliability, the greater 
the spread, and the more time passengers have to budget for 
waiting. Of course, not all of budgeted waiting time is actually 
spent waiting on any given day; part is spent waiting, and the 
remainder is potential waiting time, just as with short-headway 
service. Like schedule inconvenience, potential waiting time is 
manifested in passengers arriving earlier than planned at their 
destination. The difference is that potential waiting time varies 
from day to day and cannot be counted on in planning daily 
activities, while schedule adherence is not random, and can be 
counted on, making it less of a burden to passengers. 

Using the notation that E[V] equals mean schedule devia­
tion, and using the weight of 0.5 suggested earlier for combi­

excess budgeted 
waiting time 

excess 
synchronization platform potential 

ning potential waiting with platform waiting, summary mea­
sures of excess waiting time can be calculated as follows: 

mean excess platform waiting = E[V] − V0.02


excess budgeted waiting = V0.95 − V0.02


mean potential waiting = V0.95 − E[V]

equivalent excess waiting = (excess platform waiting) 

+ 0.5 � (potential waiting) 
= 0.5 (excess platform waiting 

+ excess budgeted waiting) 

6.3.2 Example Analyses 

Example schedule deviation and waiting time summary 
reports for long-headway service are shown in Figure 16. 
These figures compare two example cases, each based on 100 
synthesized observations: 

•	 Case No-OC is a route with relatively poor reliability. 
Schedule deviation has a standard deviation of 2.2 min, so 
that only 72% of departures are in an on-time window of 
0 to 5 min late. 

a. Distribution of Schedule 
Deviations 
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Figure 15. Long-headway waiting time Figure 16. Long-headway schedule 
components. deviation and waiting time analysis. 
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Table 7. Waiting time component comparison. 

Component 
Case No-OC 

(min) 
Case OC 

(min) 
Change 

(min) 

2nd-percentile schedule deviation -1.0 0.1 1.1 

Mean schedule deviation 3.48 1.88 -1.60 

95th-percentile schedule deviation 6.8 4.6 -2.2 

Mean excess platform wait   4.5 1.8 -2.7 

Equivalent excess wait 6.2 3.2 -3.0 

Excess budgeted wait 7.9 4.6 -3.3 

Potential wait 3.4 2.8 -0.6 

•	 Case OC is the same route, and has the same underlying 
variability, as Case No-OC,but operational control is applied 
by holding, and the scheduled departure time has been 
shifted earlier by 2.2 min. With that schedule adjustment, 
the earliest 30% of departures will be held; as a result, they 
are assumed to have random schedule deviations between 
0 and 1.5 min. 

Figure 16(a) shows a strong improvement in operational 
quality reflected in the distribution of schedule deviations. 
The 5% of trips that were early disappear, and the percentage 
of trips in the 0- to 5-min window rises from 70% to 97%. 
The percentage of trips in the highest quality category (0 to 
3 min late) rises from 39% to 79%. 

The waiting time summary found in Figure 16(b) expresses 
these results in terms of impact to passengers. Mean platform 
waiting time falls by 2.7 min because passengers do not have 
to arrive before the scheduled departure time and the average 
schedule deviation has been reduced considerably. Counting 
changes in potential waiting time, there is net reduction in 
equivalent waiting time of 3 min. 

Table 7 provides additional detail on how operational con­
trol shrinks the spread between early and late schedule devi­
ations. The 2nd-percentile schedule deviation rises by 1.1 min 
and the 95th-percentile schedule deviation falls by 2.2 min, 
shrinking excess budgeted waiting time by 3.3 min. 

Because potential waiting time has most to do with the 
upper end of the schedule deviation distribution, actions 
that reduce the upper end (gross lateness) tend to most 
affect potential waiting time, while actions that reduce the 
lower end (earliness) tend to reduce platform time, as in the 
example. Because platform waiting time affects passengers 
more strongly than potential, actions that reduce earliness 
are therefore particularly effective. 

The mean waiting time calculations do not account for the 
(small) percentage of passengers who miss their bus (perhaps 
because the bus was early) and have to wait a full headway for 
the next one. The reason this percentage is not taken into 
account is two-fold. First, the expected penalty for missing the 
bus is 0.02 h, where h is the scheduled headway, and 0.02 is the 
probability of missing the bus. Because this quantity depends 
on the planned headway rather than on a schedule deviation, 
it does not contribute to excess waiting time because it will be 
the same regardless of service reliability. (That would not be 
the case if the target arrival time were not percentile-based, 
e.g., if it were set at 1 min before the scheduled departure 
time, for example.) 

Second, while the immediate impact of an early bus is to 
make a few passengers wait a long time, in the long term the 
impact of early buses is to make all passengers arrive earlier at 
the bus stop every day. For example, a passenger who misses 
a bus on a route with a 20-min headway suffers a 20-min 
waiting time penalty that day. However, for maybe the next 
100 days, the passenger will arrive at the stop 2 min earlier to 
be sure to not miss the bus again, which costs him 200 min­
utes of additional waiting. As this simple example shows, the 
impact of earliness on waiting time is accounted for by setting 
the target arrival time to the 2nd-percentile schedule devia­
tion, which is sensitive to earliness. 

To reiterate, determining extreme values from data requires 
large sample sizes. A rule of thumb is that there should be at 
least 5 observations outside the extreme value estimated. 
Therefore, about 250 observations are needed to make a reli­
able estimate of the 2nd-percentile schedule deviation. AVL 
will provide that kind of sample size, but it may be necessary 
to aggregate over a considerable date range and/or over a 
period of the day with several scheduled trips. 
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C H A P T E R  7  

Tools for Analyzing Crowding


Crowding is important to passengers for their comfort; to 
operations, because it can slow the boarding and alighting 
process; and to planning, as a measure of efficiency. These dif­
ferent viewpoints need different measures derived from pas­
senger count data. 

The planning viewpoint is concerned with average load at 
the peak volume point, that is, the segment whose average 
load is the greatest. Schedule planning often uses peak point 
load to determine headway, using a nominal design capacity. 
Because this measure is a single number that is widely under­
stood, it is not covered further. However, impacts on opera­
tions and on passengers are strongly affected by the random 
distribution of passenger crowding, something that can only 
be analyzed well with the large samples that APCs can afford. 

This chapter describes methods for analyzing passenger 
crowding. These methods have been programmed as proto­
types in a spreadsheet file which is available on the project 
description web page for TCRP Project H-28 on the TRB 
website: www.trb.org. 

7.1	 Distribution of Crowding 
by Bus Trip 

For both the passenger and operations viewpoints, load can 
be examined on every segment of a trip. However, for most 
purposes, analysts want to focus on the most crowded segment 
(the maximum load segment) of each trip. 

The maximum load segment of any trip may differ from the 
route’s peak volume point. If averaged over many trips, the aver­
age maximum load will often be greater, and cannot be smaller, 
than average load at the peak volume point. 

Average maximum load is a measure suggested by the 
Transit Capacity and Quality of Service Manual (TCQSM) to 
characterize level of service with respect to crowding (27). The 
TCQSM defines six levels of service (LOSs) (A through F) and 
suggests thresholds based on the number of seats and amount 
of available standing space per standee. The examples in this 
section use the thresholds shown in Table 8; they were deter­
mined using TCQSM default values and assuming a 40-ft bus 

with 36 transverse seats, 6 longitudinal seats, a stairwell for the 
rear door, and 6 ft of unused length at the front of the bus. (For 
greater detail, the TCQSM’s LOS F has been subdivided into 
levels F1 and F2.) 

However, while these thresholds account well for passenger 
comfort levels on an individual trip, they do not mean much 
when applied to an “average trip.” Neither operations nor pas­
sengers care much about average crowding. What really mat­
ters is the distribution of crowding and, in particular, extreme 
values. Because of the large sample sizes afforded by APC data, 
analysts can derive, from maximum load observations, distri­
butions of both trips and passengers by crowding level. 

To illustrate, the researchers analyzed 30 observations of 
peak-hour trips on a certain route and found that the mean 
value of maximum load was 40.3. (The data and analysis 
described in this chapter can be found in the spreadsheet file 
on the project description web page for TCRP Project H-28 
on the TRB website: www.trb.org.) With the example 42-seat 
buses, the TCQSM would rate this route-period in LOS C. On 
average, load is less than the number of seats, which deceptively 
suggests that everybody should get a seat and that there should 
be little problem of crowding interfering with boarding and 
alighting. In fact, the distribution of maximum load over those 
30 trips, shown in Figure 17, offers quite a different picture. 
About 47% of the trips had standees (load > 42); and 20% of 
the trips were either “crowded” or “overcrowded” (load > 62), 
which could seriously affect running time. Yet, 27% of the 
observed trips had at least half their bus seats empty, suggest­
ing a possible bunching problem. 

7.2	 Distribution of Crowding 
Experience by Passenger 

7.2.1 Classification of Crowding Experience 

Measures of passenger service quality should use passen­
gers, not bus trips, as units and should adopt the passenger’s 
viewpoint. Crowding experience from the passenger’s view­
point can be classified as follows: 

http://www.trb.org
http://www.trb.org
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Table 8. Example crowding thresholds. 

Load 
(pax) 

21 

32 

42 

53 

62 

69 

Basis 

0.5 * (no. of seats) 

0.75 * (no. of seats) 

no. of seats 

3.85 sq. ft. per standee 

2.2 sq. ft. per standee 

1.6 sq. ft. per standee 

Passenger Comfort 

Can sit next to unoccupied seat 

Can choose seat 

Seated 

Standing but not crowded 

Full 

Borderline of crowded and overcrowded 

TCQSM LOS 

A 

B 

C 

D 

E 

F1
† 

†
LOS F from theTCQSM has been subdivided into levels F1 and F2. 

•	 Seated next to an empty seat (corresponds to LOS A) 
•	 Seated but not next to an empty seat (corresponds to 

LOS B-C) 
•	 Standing but not crowded (3.85 sq. ft. or more per standee; 

for this example, load is no more than 53) (corresponds to 
LOS D) 

•	 Standing and bus is full (2.2 to 3.85 sq. ft. per standee; for 
this example, load is between 54 and 62) (corresponds to 
LOS E) 

•	 Standing and crowded (1.6 to 2.2 sq. ft. per standee; for 
this example, load is between 62 and 69) (corresponds to 
LOS F1) 

•	 Standing and overcrowded (less than 1.6 sq. ft. per standee) 
(corresponds to LOS F2) 

In this classification, if a bus with 42 seats has 70 passen­
gers, then 42 passengers will be classified as “seated but not 
next to an empty seat” (they experience LOS B-C); the other 
28 will be classified as “standing and overcrowded” (they expe­
rience LOS F2). 

When all the passengers on the 30 trips used in the previ­
ous example are classified, their distribution is as shown in 
Figure 18. A comparison of Figures 17 and 18 shows how dif­

100% 

Load more than 69 90%


80%
 Load up to 69 

70% 
Load up to 62 

60%


50%
 Load up to 53 

40% 
Load up to 42 

30% 

Load up to 32 20% 

10% 
Load up to 21 

0%


mean = 40.3


Figure 17. Distribution of trips by 
maximum load. 

ferent passenger experience is compared to the “experience” of 
the buses. While 6.7% of the buses were “overcrowded,” only 
4.6% of the passengers were overcrowded standees—because 
more than half the passengers on the crowded buses were 
seated. Very few passengers fall into the category “standing but 
not crowded” because even though 17% of the buses had loads 
in this category, only a few of the passengers on those buses 
were standing. And while 27% of the buses were in the least 
crowded category, only 14% of the passengers are in that cate­
gory, because not many passengers were on those buses. 

Distribution by passenger (rather than by trip) better indi­
cates the level of service that passengers experience. For exam­
ple, Figure 18 shows that 14% of the passengers had excellent 
service (during peak hour, they were able to sit with an empty 
seat next to them); and the vast majority had service equiva­
lent to a carpool (a seat next to an occupied seat). However, 
about 5% experienced overcrowding as standees; they are the 
passengers who are likely to complain. 

A distribution of passengers by experienced crowding can 
be used to support a service quality standard such as 

•	 “During peak periods, at least 80% of our customers should 
be seated at the maximum load point, and 

100% 
Standing, load > 69 

90%


80%

Standing, load up to 69 

70% 

60% Standing, load up to 62 

50% 
Standing, load up to 53 

40% 

30% 
Seated next to occupied 

20% seat


10%
 Seated next to empty 
seat 

0% 

Figure 18. Distribution of passengers 
by crowding experience. 
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•	 “Fewer than 2% of our customers should have to stand on 
an overcrowded bus (a bus with less than 1.6 sq. ft. stand­
ing space per person).” 

This standard is much more customer oriented than, for 
example, specifying that average load factor (load divided by 
number of seats) not exceed 1.2. The latter is a common format 
for load standards. However, passenger experience of crowding 
is not based on average load, but is sensitive to extremes; fur­
thermore, even on crowded trips, passenger experience is very 
different depending on whether one has a seat. 

7.2.2 Assumptions About Seated Passengers 

Passenger counts do not provide direct observation of how 
many passengers are seated or whether they are next to an 
empty seat. However, those figures can be estimated to a rea­
sonable level of accuracy using three assumptions: passengers 
sit if they can, seats are in pairs (as is most often the case on 
buses), and passengers sit next to an empty seat if possible. 
Thus, for a bus with S seats and passenger load L, then 

•	 If L ≤ S/2, everybody sits next to an empty seat; 
•	 If L ≥ S, nobody sits next to an empty seat; and 
•	 If L lies between S/2 and S, S − L passengers sit next to an 

empty seat, because there are S − L empty seats. For exam­
ple, if there are 42 seats and load is 32, 10 people sit next to 
an empty seat and the other 22 people sit in pairs next to 
an occupied seat. 

This formula is incorporated in the spreadsheet file that ana­
lyzes crowding. (The spreadsheet is available on the project 
description web page for Project H-28 on the TRB website: 
www.trb.org.) 

Of course, the assumptions about where passengers sit or 
stand are sometimes violated; some passengers choose to 
stand when seats are available, and friends often choose to sit 
together, even if a bus is nearly empty. In such cases, however, 
the service received by those passengers is still appropriately 
classified based on the assumptions, because they had the 
option of sitting, or of sitting next to an empty seat, but chose 
something that they apparently preferred. 

7.2.3 Alternative Classifications 

Differentiating seated passengers depending on whether a 
seat next to them is empty may be considered excessive detail. 
Of course, the two classes of seated passengers can be col­
lapsed. However, to the extent that market research shows 
that passengers like having an empty seat next to them, both 
classes are worth measuring, particularly as these classes can 
be estimated using APC data. 

For some purposes, all the passengers, seated and standing 
in a crowded bus, may be said to experience overcrowding. 
This classification may be especially appropriate where the 
vehicle’s ventilation system allows overcrowding to result in 
unpleasant heat and odor. 

http://www.trb.org
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C H A P T E R  8  

Passenger Count Processing and Accuracy


Accuracy of automated passenger counts may be reduced 
by many types of errors, including counting error, location 
error, attribution error (i.e., attributing counts to the wrong 
trip), modeling error (e.g., assumptions about loops), and 
sampling error. It is also important to distinguish between the 
accuracy of raw counts and that of screened and corrected 
counts, and between the accuracy of directly measured items 
(ons and offs by stop) and aggregate measures such as load, 
passenger-miles, and trip-level boardings. 

Finally, for any type of error, it is important to distinguish 
between bias (systematic error) and random error. While 
random error, like sampling error, shrinks with increased 
sample size, correcting for bias is usually impractical; therefore, 
controlling bias becomes far more important than controlling 
random error. 

To a large extent, this chapter and the following one repeat 
material originally published in Furth et al. (7). 

8.1 Raw Count Accuracy 

The accuracy of raw counts tends to be the focus of vendors 
and many buyers. Kimpel et al. recently studied Tri-Met counts 
and found statistically significant bias for one of the two bus 
types tested (bus type affects how sensors are mounted)—an 
average overcount of 4.24% for ons and 5.37% for offs (37). 
Overall, standard deviation of random count error was found 
to be rather large—about 0.5 passenger per stop for both ons 
and offs, for a coefficient of variation (cv) of 0.37. This value 
is surprisingly large; the researchers suspect newer systems are 
more precise. 

Kimpel et al. suggest applying correction factors to over­
come biases. However, few agencies can afford the research 
needed to establish the level of systematic over- or undercount. 
They need counts whose biases are small enough to live with. 
Less onerous are bias corrections established by the APC ven­
dor. One vendor includes in its processing software correction 

factors for counts of 1, 2, and 3+ passengers, yielding non-
integer corrected counts. 

Test criteria for APC equipment often fail to distinguish 
between random and systematic error. For example, the crite­
rion “the count should be correct at 97% of stops” does not con­
sider whether there might be a tendency to over- or undercount. 
Another weakness of this criterion is that many stops may have 
zero ons and offs, which is rather easy to count correctly. 

To control bias, tests should require that the ratio of total 
counted ons to total “true” ons be close to 1. Using Tri-Met’s 
random stop-level error cv of 0.37, the hypothesis that the on 
counts have no systematic error can be accepted at the 95% 
confidence level if this ratio is in the range 1 ± 0.72 √n, where  
n equals the number of stops contributing to the test total. A 
less stringent test would allow a small degree of bias, for exam­
ple, 2% (partly in recognition that the “true” count may itself 
contain errors); then the acceptance range becomes 1 ± (0.02 
+ 0.72 √n), which, with n equal to 5000, is the range 1 ± 0.03. 

One of STM’s tests is that, at the trip level, the average 
absolute deviation between automated and manual counts of 
boardings should be less than 5% of average trip boardings. 
Because it uses absolute deviations, this test masks systematic 
error. However, the strict criterion of 5% effectively forces 
both random and systematic error to be small. 

Acceptance tests should specify the screening criteria and the 
maximum percentage of trips (or blocks of trips) rejected, and 
then apply accuracy criteria to the remaining data. STM pro­
vides a good example: it rejects trips with an imbalance of 5 or 
more passengers, requires that no more than 85% of trips be 
rejected, and applies accuracy criteria to the remaining trips. 

8.1.1 Measuring Ground Truth 

One problem in testing APC accuracy is the difficulty of 
observing ground truth. Conventional manual counts can 
have greater counting error than a good APC. One vendor 
insists that clients use video cameras, at least one per door, in 
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acceptance tests, as the vendor does in research and develop­
ment. When the CTA tested its new APCs, it enhanced the 
reliability of its manual counts by using a three-person crew 
staffed by managers and data analysts who had a stake in the 
outcome and, therefore, reason to be meticulous in counting 
accurately. 

8.1.2 Block-Level Screening 

Because APCs count both ons and offs, large errors (e.g., due 
to malfunctioning equipment) are easy to spot based on a 
large difference between total on and off counts over a bus’s 
daily duty (“block”). Screening criteria vary. Tri-Met rejects 
blocks whose on and off totals differ by more than 10%; King 
County Metro requires that a block’s total offs be no more 
than 7% below or 15% above the block’s on total. (The asym­
metric criterion is a concession to recognized counting bias 
with its older APC system.) 

8.1.3 Accuracy of Load and 
Passenger-Miles Measurements 

Because the accuracy of load and passenger-miles meas­
urements depends not only on raw count accuracy, but also 
on the processing system’s ability to parse blocks into trips 
and deal with on-off imbalances, accuracy of load and related 
measures is a good system test and deserves to be examined 
in its own right. STM sets a good example, requiring that the 
average absolute error in departing load be less than 5%. 

Relative errors in load can be much greater than those of on 
and off counts. For example, Kimpel et al. found that, while sys­
tematic error for Tri-Met’s on and off counts were below 2%, it 
was 6% for departing load (37). Because passenger-miles are a 
weighted accumulation of loads, one can expect its bias to be 
similar to that of load. 

One cause of load errors can be the balancing method 
used. Kimpel et al. determined load using their own trip-level 
balancing method, because the block-level balancing algo­
rithm used by Tri-Met yielded loads with greater bias. Block-
level balancing biases loads upward because upward errors 
are permitted to propagate through the day, while propaga­
tion of downward errors is limited because of a restriction 
against negative departing loads. 

8.2 Trip-Level Parsing 

Screening based on on-off balance protects on and off 
totals from substantial errors. However, because of a phe­
nomenon called drift, substantial errors can still develop in 
calculated load (accumulated ons minus accumulated offs) 
and passenger-miles (a weighted sum of segment loads), even 
with small errors in raw counts. To illustrate, suppose each 

trip has 2 excess ons. After five trips, load on every segment 
will appear to be 10 passengers greater than it actually is. 

APC processing software controls drift by regularly resetting 
the system state (i.e., load on the bus) at points of known load. 
On most transit routes, these points are terminals or lay­
over points at which, either by custom or operating rule, the 
through-passenger load is zero. Blocks are then parsed at 
known-load points into sections that may be called “sub­
blocks,” which are usually single trips or round trips, with load 
at the start and end of each sub-block set to zero. 

Data structures and processing software need to account 
for some trip ends being points of zero load and others not; 
moreover, there may be points of known zero load that are 
not trip ends. 

8.2.1 End-of-Line Identification 
and Activity Attribution 

The earlier review of automatic location measurement 
pointed out difficulties often encountered in correctly iden­
tifying the end of the line. This problem is most severe in 
older APC systems that lack sign-in data and suffer from low 
schedule-matching rates. 

When the general location of a route endpoint can be cor­
rectly matched, the end-of-line arrival and departure time 
issues that vex running time analysis are not a concern for pas­
senger counts; rather, the main challenge is attributing ons and 
offs to the right trip. At a simple route terminal, the usual pro­
cedure is to attribute alighting passengers to the arriving trip 
and boarding passengers to the departing trip. Sometimes, the 
boarding and alighting activity are sufficiently simultaneous 
that APCs make a single stop record, which processing soft­
ware has to split. Sometimes many stop records will be gener­
ated at the terminal (and at other stops as well) as the bus may 
go through several cycles of opening doors to let passengers 
board, then closing doors to preserve or keep out the heat. 
On-board APC analyzers var y in their ability to take external 
inputs (e.g., odometer pulses) and use them in determining 
when to close a stop event and start a new one. Off-line pro­
cessing software has to have the flexibility to recognize and 
handle both single- and multiple-record cases. 

8.2.2 Inherited and Bequeathed Passengers 

Operating practices for some routes allow passengers to 
remain on board at the end of one trip in order to ride on the 
next trip. One example is a route that ends with a loop; 
another example is a pair of interlined routes for which nom­
inally transferring passengers actually remain on board. Data 
structures have to identify which route ends are not necessar­
ily zero-load points and recognize passengers inherited from 
a previous trip. 
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To permit trip-level data analysis, the most direct way to 
deal with inherited passengers is for databases to include an 
extra stop record at the start and end of each trip indicating 
the number of passengers inherited from the previous trip 
and bequeathed (left on board) to the next trip. Manual ride 
check forms often start and end with a row for passengers left 
on board. 

An alternative arrangement, proposed by at least one ven­
dor, makes no record of inherited passengers but assumes 
that any imbalance in ons and offs at the trip level can be 
explained as inherited or bequeathed passengers. If a trip 
has more offs than ons, the difference is treated as passen­
gers inherited at the start of the trip; if more ons than offs, 
the difference is treated as bequeathed passengers at the end 
of the trip. However, this shortcut has several shortcomings. 
Imbalance can be due to counting errors as well as inherited 
passengers. In the face of counting errors, this approach will 
violate the law of conservation, because it does not guaran­
tee that the number of passenger bequeathed by one trip 
equals the number inherited by the next. By forcing correc­
tions to be positive (i.e., as opposed to correcting imbalance 
by reducing ons or offs), it biases upward the number of pas­
sengers; and by concentrating the corrections at the route 
ends, it increases average passenger trip length. Together, 
these factors combine to bias passenger-miles upward. Also, 
this approach cannot resolve imbalances on routes with 
loops at both ends. 

8.2.3 Routes Ending in Loops 

Many transit routes end in loops that lack a natural termi­
nal point at which buses always empty out. Examples are 
radial routes with a loop at the suburban end for wider cov­
erage and commuter routes with a collection/distribution loop 
through the downtown, such as NJ Transit routes into 
Philadelphia. There are three ways to deal with attributing 
passengers who board or alight on these loops; each approach 
has important implications for data structures. 

The Round-Trip Approach 

The simplest approach is treating the round trip as a single 
trip. However, the way an agency defines its trips is part of a 
business model that carries into its scheduling database, with 
which the APC database must be consistent. Therefore, this 
solution is only available to the extent that the schedule data­
base is constructed in terms of round trips. 

The Terminal-Stop Approach 

A second way—perhaps the most common—to deal with 
a loop is to designate a terminal stop somewhere in the loop; 
there may be a short layover scheduled there. Through load at 

this point is treated as passengers inherited by the trip leaving 
the loop. 

The Overlapping Loop Model for Short Loops 

A third approach, used by NJ Transit on its Philadelphia 
routes (38), is to model a bus in a loop as serving two trips at 
once, attributing alightings to the trip entering the loop and 
boardings to the trip exiting the loop. Figure 19 illustrates the 
overlapping loop model. With this model, boardings and 
alightings occurring within a loop are attributed to the trip 
that “naturally” serves those passengers; there are no explicit 
inherited passengers, avoiding messy apparent transfers. This 
model is also well suited to making balancing corrections. 

The overlapping loop model relies on two assumptions 
about passenger travel: 

•	 General Loop Assumption: No passenger rides around the 
entire loop. 

•	 Short Loop Assumption: No passenger’s trip lies entirely 
within the loop. 

Discretion is needed in defining the boundary between 
the entering and exiting trip for boardings. For NJ Transit 
routes into Philadelphia, boardings on the exiting trip 
clearly begin at the first Philadelphia stop. However, on 
some routes with loops, the exiting trip’s boardings may 
begin at the last trunk stop (Stop A in Figure 19) if travel 
time around the loop is smaller than the service headway, in 
which case passengers waiting at A' have nothing to lose by 
boarding at A and circling the loop. 

With the overlapping route model, a short loop effectively 
serves as a fixed-load point for parsing, screening, and on-off 
balancing. For the entering trip, load is fixed at zero when it 
has finished serving the loop; for the exiting trip, load is fixed 
at zero as it begins serving the loop. 

An example of fixing and balancing load on a loop with 
four stops (A through D) is shown in Table 9. In Table 9(a), 
there is an imbalance of 2 excess offs; however, after the data 
is split into entering and exiting trips, one can see that the 
entering trip actually has 4 excess offs and the exiting trip 2 
excess ons. Corrections are made in Table 9(b) to the entering 
and exiting trip separately, following the balancing procedure 
described later in Section 8.3. 

Applying the overlapping route model requires data struc­
tures that recognize loop start and end points and the rela­
tionship between the trips entering and exiting the loop. The 
model can be used only as part of processing the raw counts; 
corrected counts are returned to a database without overlap­
ping routes. If the model is used in such a manner, a stop in 
the loop is designated as the terminal where stop records are 
inserted that give the number of bequeathed and inherited 
passengers. It is easy to show that 
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a. Attributing Boardings b. Attributing Alightings 

B 

A'  A 

Trip Entering Loop 

Trip Leaving Loop 

Figure 19. Overlapping loop model. 

Inherited Passengers = EarlyOns + LateOffs ( )2 

where EarlyOns equal ons in the loop before the terminal, and 
LateOffs equal offs in the loop after the terminal. As shown in 
Table 9(c), inherited passengers = (5+5) + 9 = 19. 

It is also possible to have an overlapping route data struc­
ture in the final database of corrected counts. Such a data 
structure would allow analyses that treat the entire loop 
as part of both the trip entering and the trip exiting the 
loop, with passenger movements on the loop appropriately 
attributed. That data structure requires methods to prop­
erly deal with overlapped sections. For example, the actual 
vehicle load w ithin the loop is equal to the sum of load on 
the entering trip and load on the exiting trip. As another 
example, care must be taken not to double count operat­
ing statistics on the loop such as vehicle-miles or schedule 
deviations. 

8.2.4 Routes Without a Fixed-Load Point 
or Short Loop 

The few routes that do not have a zero-load point or short 
loop at either end pose a challenge for preventing drift. Exam­
ples are downtown circulators and routes with long loops at 

Trip Entering 

Trip Leaving 

B 

A'  A 

both ends. Simply letting ons and offs accumulate all day 
long, and taking the difference as load, invites drift errors if 
ons are overcounted early in the day, even after total ons and 
offs over the day have been balanced. 

The only solution that has been suggested involves opera­
tor intervention: having the operator count and enter, via the 
control head, the load at a certain point in each cycle, prefer­
ably a point where the load is normally low. While requiring 
operator input violates the traditional design philosophy of 
APCs, it may be the only way of ensuring reliable load data on 
routes without zero-load points. Buyers in this situation can 
request that a new APC system support an operator-initiated 
“observed load event,” including an automatic prompt at the 
designated location. 

8.2.5 Accounting for Operator Movements 

Most operator off/on movements occur at layover points 
when the bus is empty. Absent counting errors, an operator 
who gets off and back on an empty bus at a layover point can 
be detected because such movements cause an apparent 
through load (arriving load minus offs) of −1, or a still more 
negative number if the operator gets off and on several times, 
for example, to adjust a mirror. 
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Table 9. Balancing load on a loop. 

(a) Splitting Data into Entering and Exiting Trips 

 Combined Entering Trip Exiting Trip 
Stop 
Inherited 
Before loop 
A 
B 
C 
D 
After loop 

Total 

Off On 

6 42 

10 5 

10 5 

10 5 

10 5 

18 0 

64 62 


Load 
0 


36 

31 

26 

21 

16 

-2 


Off On 

6 42 

10 

10 

10 

10 


46 42 


Load 
0 


36 

26 

16 

6 


-4 


Off On 

5 

5 

5 

5 


18 0 


18 20 


Load 
0 

5 

10 

15 

20 


2 


(b) Correcting Entering and Exiting Trips 

Entering Trip Exiting Trip 
Stop 
Inherited 
Before loop 
A 
B 
C 
D 
After loop 

Total 

(c) Splitting Trips at Terminal (Stop) C 

Stop 
Inherited 
Before loop 
A 
B 
C (off only) 
Bequeathed / inherited 
C (on only) 
D 
After loop 

Total 

The researchers are not aware of efforts in APC data pro­
cessing to identify and exclude operator movements; clearly, 
there is a need for such algorithms, especially those that work 
well in the presence of possible counting error. 

8.3 Trip-Level Balancing Methods 

Comparing on and off totals gives APCs a built-in error 
check. Large errors can simply be screened out; that is part of 
the advantage of the large sample size that comes with auto­
mated data collection. Counts with smaller imbalances will be 
accepted, leaving the question of how counts should be cor­
rected in order to balance ons and offs. 

Off On 

6 44 

10 

9 


10 

9 


44 44 


Load 
0 


38 

28 

19 

9 

0 


Off On 

5 

5 

4 

5 


19 0 


19 19 


Load 
0 

0 

5 


10 

14 

19 


0 


Entering Trip Exiting Trip 
Off On 

6 44 

10 5 

9 5 


10 


35 54 


Load 

0 


38 

33 

29 

19 

19 


Off On 

4 

9 5 


19 0 


28 9 


Load 

19 

23 

19 

0 


Besides achieving on-off balance, corrections aim to pre­
vent negative loads. The algorithms the researchers have seen 
consider only departing load. A more stringent feasibility test 
looks also at through load. For example, suppose a bus arrives 
at a stop with a load of 2 passengers; on-off counts then indi­
cate that 6 passengers got off and 5 got on. The departing load 
is calculated to be 1, a positive number that raises no alarm. 
However, something about these figures is not right; how 
could 6 passengers get off when only 2 were on the bus? This 
discrepancy is clear when one calculates that through load 
based on these figures is −4. Negative through loads can occur 
if passengers (or the bus operator) get on and off at the same 
stops (e.g., passenger steps on the bus, finds out it is the wrong 
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bus, and steps off); but that is a rather rare occurrence, except 
perhaps at terminals. To account for an occasional balker or 
an operator getting off and back on, correction algorithms 
can set −1 as the lower limit on through load, something illus­
trated in the following example. Offs occurring at terminals 
well after the bus has arrived and discharged its load are likely 
to be balkers, and processing algorithms may explicitly seek 
to identify and deal with them. 

8.3.1 Selecting Target On/Off Total 

In a sub-block, boundary conditions require that the differ­
ence between total ons and offs equal the difference between 
bequeathed and inherited passengers. If the totals do not bal­
ance, should total ons be adjusted to match total offs, or vice 
versa, or should the correction be shared between the two? 

If the counting system has known error patterns, they can 
be taken into account in selecting the target. Let 

Ton 
� , T� 

off = target (corrected) sub-block ons and offs total 
Ton, Toff = block level raw totals for ons and offs 

M = bequeathed–inherited passengers for the sub-
block (given) 

kon, koff = external adjustment factors for ons and offs 
s2 , s 2 = variance of sub-block errors for on and off totals on off 

2 2con = 1/son, coff = 1/soff 

The external adjustment factors are correction factors an 
agency might have that account for known systematic bias; 
for example, kon = 1.03 implies that ons have a systematic 
undercount of 3%. 

From information theory, the best (least variance) esti­
mates are given by 

c k T  + c k T + Mc 

c 
T� = on on on off off off off (3))on 

on + coff 

T off 
� = T� 

on − M ( )4 

When M = 0, this expression is a weighted average of adjusted 
on and off totals, using relative certainty as weights. For 
example, if con/coff = 3 and a sub-block had 4 excess ons, the 
correction would be to reduce ons by 1 and increase offs by 3. 
Even if on counts are known to be more accurate than off 
counts, or vice versa, the target is more accurately estimated 
using information from both sets of counts, rather than 
ignoring the weaker set. 

8.3.2 Distributing Corrections 

One simple way to distribute corrections that has already 
been mentioned is to put them at the end (or start) of the sub-
block. The method used in TriTAPT is to make the correc­

tions to the largest counts, the assumption being that count­
ing errors are more likely to have occurred there. 

Another systematic method uses proportional corrections. 
One simply multiplies all the ons in a sub-block by the cor­
rection factor f = Ton 

� /Ton, and all offs bythe correction factor 
f = Toff 

� /Toff. This method has two desirable properties: first, it 
leaves the alighting and boarding centroids unchanged, leav­
ing average passenger trip length unaffected; second, it calls 
for greater corrections where counts were greater, which is 
consistent with the notion that the bigger the count, the more 
likely an error. 

A rounding procedure is illustrated in the example that fol­
lows. To round ons, first generate the profile of cumulative 
adjusted ons; round the cumulative profile; and then gener­
ate rounded ons by stop as the difference between successive 
cumulative ons. As mentioned earlier, this rounding proce­
dure can be applied to force counts in the database to be inte­
gers, or it can be applied when generating reports. 

8.3.3 Correcting Negative Loads 

After a sub-block is balanced, calculated loads may be neg­
ative at one or more points along a route. Most commonly 
checked is departing load; however, a stronger test is for 
through load (departing load minus ons). There should be 
thresholds for negative departing load and negative through 
load beyond which a trip should be rejected. 

Trips not rejected should be adjusted to eliminate negative 
loads. One option, illustrated in this section, is to allow 
through loads of −1 to account for an operator exiting and re­
entering an otherwise empty bus, or a passenger boarding and 
then alighting an empty bus (e.g., upon discovering it was the 
wrong bus). 

If there are multiple points with negative load, the point of 
greatest violation should be corrected first, because its cor­
rection is likely to cure negative loads elsewhere. The point of 
correction becomes a new sub-block boundary, dividing the 
sub-block into two new sub-blocks which are then balanced, 
making the procedure recursive. 

A balancing example is given in Table 10. Original counts 
[Table 10(a) and (b)] have 36 ons and 34 offs. First, target on 
and off totals are calculated to be 35, then ons and offs are 
adjusted and rounded. 

A check for negative loads in Table 10(c) finds the greatest 
violation at Stop 5. Through load there is −4, but because 
through loads of −1 are allowed, the violation is −3. The trip 
is split at Stop 5 into two new sub-blocks, which are balanced 
in Table 10(d) through (k). Stop 5’s offs belong to the early 
sub-block (the one ending at Stop 5), and its ons to the late 
sub-block. 

The early sub-block [Table 10(d) and (e)] begins with an 
imbalance of −3 (25 ons, 29 offs, and a target difference of −1). 
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Table 10. Balancing initial load and correcting negative load. 

(a) Balance Ons 

Stop Input 
Ons 

Cumulative 
Ons 

Scaled 
Cumulative 

Rounded 
Cumulative 

Balanced 
Ons 

1 12 12 11.67 12 12 
2 8 20 19.44 19 7 
3 6 26 25.28 25 6 
4 0 26 25.28 25 0 
5 2 28 27.22 27 2 
6 5 33 32.08 32 5 
7 2 35 34.03 34 2 
8 0 35 34.03 34 0 
9 1 36 35.00 35 1 

10 36 35.00 35 0 

Total 36 35 
Target 35 f = 0.972 

(b) Balance Offs 

Stop Input 
Offs 

Cumulative 
Offs 

Scaled 
Cumulative 

Rounded 
Cumulative 

Balanced 
Offs 

1 0 0.00 0 0 
2 2 2 2.06 2 2 
3 4 6 6.18 6 4 
4 10 16 16.47 16 10 
5 12 28 28.82 29 13 
6 0 28 28.82 29 0 
7 1 29 29.85 30 1 
8 0 29 29.85 30 0 
9 3 32 32.94 33 3 

10 2 34 35.00 35 2 

Total 34 35 
Target 35 f = 1.029 

(c) Check for negative load 

Stop Off On Thru Load Dep Load Violation Comment 

1 0 12 0 12 
2 2 7 10 17 
3 4 6 13 19 
4 10 0 9 9 
5 13 2 -4 -2 -3 split here 
6 0 5 -2 3 -1 
7 1 2 2 4 
8 0 0 4 4 
9 3 1 1 2 

10 2 0 0 0 

(continued on next page) 



Table 10. (Continued). 

(d) Balance Ons, Early Subblock (g) Balance Ons, Late Subblock (j) Balance Counts 

Stop Input 
Ons 

Cum 
Ons 

Scaled 
Cum 

Round'd 
Cum 

Bal'c'd 
Ons Stop Input 

Ons 
Cum 
Ons 

Scaled 
Cum 

Round'd 
Cum 

Bal'c'd 
Ons Stop Offs Ons Thru 

Load 
Dep 
Load 

1 12 12 12.96 13 13 5 2 2 1.60 2 2 1 13 0 13 
2 7 19 20.52 21 8 6 5 7 5.60 6 4 2 2 8 11 19 
3 6 25 27.00 27 6 7 2 9 7.20 7 1 3 4 6 15 21 
4 0 25 27.00 27 0 8 0 9 7.20 7 0 4 9 0 12 12 
5 25 27.00 27 0 9 1 10 8.00 8 1 5 13 2 -1 1 

Total 25 f = 27 10 10 8.00 8 0 6 0 4 1 5 
Target 27 1.080 Total 10 f = 8 7 1 1 4 5 

Target 8 0.800 8 0 0 5 5 

(e) Balance Offs, Early Subblock 

Stop Input 
Offs 

Cum 
Offs 

Scaled 
Cum 

1 0 0.00 

Round'd 
Cum 

0 

Bal'c'd 
Offs 

0 

(h) Balance Offs, Late Subblock 

Stop Input 
Offs 

Cum 
Offs 

Scaled 
Cum 

Round'd 
Cum 

Bal'c'd 
Offs 

9 
10 

Total 

4 
2 

35 

1 

35 

1 
0 

2 

2 2 2 1.93 2 2 5 0 0.00 0 0 (k) Differences (Balanced - Original) 

3 
4 

4 
10 

6 
16 

5.79 
15.45 

6 
15 

4 
9 

6 
7 

0 
1 

0 
1 

0.00 
1.17 

0 
1 

0 
1 

Stop Offs Ons Thru 
Load 

Dep 
Load 

5 13 29 28.00 28 13 8 0 1 1.17 1 0 1 0 1 0 1 
Total 29 f = 28 9 3 4 4.67 5 4 2 0 0 1 1 
Target 28 0.966 10 2 6 7.00 7 2 3 0 0 1 1 

Total 6 f = 7 4 -1 0 2 2 

(f) Check for Neg Load, Early Subblock 
Target 7 1.167 5 

6 
1 
0 

0 
-1 

1 
1 

1 
0 

Stop Offs Ons Thru 
Load 

Dep 
Load Violation (i) Check for Neg Load, Late Subblock 

7 
8 

0 
0 

-1 
0 

0 
-1 

-1 
-1 

1 
2 

0 
2 

13 
8 

0 
11 

13 
19 

Stop Offs Ons Thru 
Load 

Dep 
Load Violation 9 

10 
1 
0 

0 -2 
-2 

-2 
-2 

3 4 6 15 21 5 0 2 -1 1 Total 1 -1 
4 9 0 12 12 6 0 4 1 5 
5 13 -1 7 1 1 4 5 

8 0 0 5 5 
9 4 1 1 2 

10 2 0 0 0 
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Target ons is calculated to be 27, target offs to 28. Corrections 
are distributed proportionally and rounded as before. Note 
that in balancing the late sub-block in Table 10(i), through 
load at Stop 5 is initialized to −1, the correction target. 

Both segments, after balancing, have no negative load vio­
lations, so the correction procedure ends. 

8.3.4 Other Count Correction Issues 

Independent of the balancing procedure, several questions 
related to databases and corrected counts arise: 

•	 Should the database store corrected counts, or should 
corrections be made on the fly? In the APC analysis sys­
tems studied, corrections are made on the fly. However, 
those systems used simple algorithms, not accounting for 
inherited passengers or loops. With more complex cor­
rection algorithms, it seems preferable to make correc­
tions during entry processing, storing the corrected 
counts in the database. 

•	 Should raw counts be stored as well as corrected counts? 
If corrected counts are stored, agencies and vendors both 
still want raw counts retained as well. Storing raw counts 

helps preserve the integrity of the data, is useful for investi­
gations, and can be used for testing new balancing methods. 

•	 Can records with invalid counts be retained? There are 
likely to be many trips for which count data is judged invalid, 
but for which time and location data, useful for analyzing 
operations measures such as schedule adherence, is not. The 
reverse can also be. This concern is met by including flags 
in the database for “counts invalid” and “times invalid.” 

•	 Should corrected counts be forced to be integers? Most 
users prefer that corrected counts be integers. The appear­
ance of fractional counts in a database tends to raise ques­
tions and emphasizes that the raw counts were deemed 
incorrect. On the other hand, it is quite possible to store 
fractional counts and simply round analysis results. 

•	 Should the database store load, or should it be derived 
from counts? Passenger load can be derived on the fly from 
counts starting at the beginning of a trip, provided there 
are records for inherited passengers. However, storing cor­
rected load can be a way of compensating for not storing 
corrected on/off counts or inherited passengers, as is the 
practice at Tri-Met. Tri-Met uses uncorrected counts in 
analyses of boardings, while for analyses involving load it 
uses balanced load estimates. 
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C H A P T E R  9  

APC Sampling Needs and National Transit 
Database Passenger-Miles Estimates 

Two common questions regarding APC system design are 
how much accuracy is needed from APCs and how many APC 
units are needed to obtain an adequate sample size. Answer­
ing those questions requires facing a related question: when 
an agency generates measures such as peak load, passenger-
miles, and route boardings from APC data, how timely and 
precise must those estimates be? 

9.1	 Sample Size and Fleet 
Penetration Needed 
for Load Monitoring 

According to the Transit Data Collection Design Manual (16), 
the passenger-count–based statistic requiring the greatest pre­
cision is average peak load on heavy-demand routes, a mea­
sure used to adjust headway. A reasonable target precision to 
ensure that the route is neither overcrowded nor overserved is 
5% or 6%, effectively limiting permissible load bias on crowded 
segments to about 5%. 

Sample size needed to achieve this target precision depends 
on the bias and cv of load estimates. Fleet penetration needed, 
in turn, depends on the number of daily trips on the route-
direction-period being analyzed, the data recovery rate, and 
how the instrumented fleet is distributed. Fleet penetration of 
10% will afford about 20r observations per quarter for a route-
direction-period with five trips per day, where r is the data 
recovery rate. (For example, if r = 80%, then 20r = 16 observa­
tions that would be obtained.) If needed, greater sample sizes 
can be achieved by simply concentrating equipped vehicles on 
heavy-demand routes, at the expense of low-demand routes, 
for which less precision in load estimates is needed. 

We have posited elsewhere that APCs make possible a more 
precise method of scheduling and service quality monitoring 
focused on extreme values of load rather than mean values. 
Extreme values reflect the impacts of load variability and 
service regularity as well as frequency and better reflect the 
quality of service as felt by passengers. Estimating extreme 

values requires a far greater sample size than estimating mean 
values, which is an argument favoring instrumenting the 
entire fleet with APCs, a course being pursued by Tri-Met. 

9.2	 Accuracy and Sample Size 
Needed for Passenger-Miles 

All U.S. agencies receiving federal assistance and operating 
in urban areas are required to report annual systemwide 
passenger-miles by mode to the NTD. Traditionally, these esti­
mates are made from a sample of manually counted ons and 
offs.Agencies can use a standard sampling and estimation pro­
cedure that requires on-off counts on 549 or more trips (39), 
or they can use any other sampling method that achieves a pre­
cision of ±10% or smaller at the 95% confidence level. Because 
manual on-off counts are labor intensive, there is a natural 
desire to find less burdensome measurement and estimation 
methods, including using APC-generated counts (40). 

One factor in using counts measured by APCs is the accu­
racy of the counts themselves, which, as the previous chapter 
shows, depends not only on sensor accuracy but also on data 
processing techniques used for parsing, screening, and balanc­
ing. The second factor is having an adequate sample size. The 
two factors are related; the less accurate the counts, the larger a 
sample is needed. This section deals with that accuracy/sample 
size trade-off. 

For all but the smallest transit agencies, sampling require­
ments for NTD passenger-miles reporting are considerably 
less demanding than are other uses of the data such as moni­
toring load or boardings by route, because the NTD precision 
requirement is only applied to a whole year’s sample aggre­
gated systemwide. Therefore, meeting the NTD require­
ment should be easy for almost any transit system with APCs. 
However, because the NTD requires that alternative sampling 
methods be statistically justified, the following section 
examines passenger-miles sampling and estimation with 
APCs in detail. 
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9.2.1 Standard Error Targets in the Presence 
of Bias 

Let 

– 
Y = mean passenger-miles per trip 
b = relative bias in the passenger-miles estimate 

– 
(b = bias/Y ) _ 

y = estimated mean passenger-miles 
se = standard error of the passenger-miles estimate 

– 
rse = se/Y = relative standard error 

The precision specification can be interpreted as: 

P y − . Y �Y + . Y( 0 1 	 0 1  ) 
( y 0 1  . 5= P Y  − 0 1. Y � �Y + . Y ) � 0 95  ( )  

– 
Subtracting E[y– ] = Y (1 + b) and then dividing by se, 

P ⎝⎜ 
Y bY  

�
y Y − − bY  

� 
0 1. Y bY  

⎠⎟
⎞ 

� 0 95  
⎛ − 0 1. −	 − 

. 
se se se 

By the Central Limit Theorem, the middle term approaches 
a standard normal variate as sample size increases; therefore, 
using the notation Φ() = cumulative standard normal distri­
bution, the precision requirement becomes 

⎛ − 0 1. − b ⎞	 ⎛ − 0 1. − b ⎞Φ	 Φ � 0 95  .  ( )  ⎝ rse ⎠ −	 ⎝ rse ⎠ 6 

From relation 6, selected values of permitted relative stan­
dard error for a given value of relative bias are shown in 
Table 11. For manual data collection, assumed bias-free, the 
permitted relative standard error is 0.051; with 8% relative 
bias, the permitted relative standard error falls to 0.012. To 
be safe, a transit agency would do well to limit the permissible 
bias in passenger-miles or load to less than 8%. 

Table 11. Relative standard 
error required versus 
measurement bias. 

Measurement Permitted Relative 
Bias* Standard Error* 

0.00 0.0510 

0.01 0.0500 

0.02 0.0471 

0.03 0.0423 

0.04 0.0365 

0.05 0.0304 

0.06 0.0243 

0.07 0.0182 

0.08 0.0122 

0.09 0.0061 

*Relative to mean passenger-miles per trip 

9.2.2 Sample Size and 
Coverage Requirements 

The determination of sample size requirements assumes 
three stages of sampling: in stage 1 all routes are selected; in 
stage 2, for each route, certain timetable trips are selected; and 
in stage 3, for each selected timetable trip, certain days are 
observed. The assumed cv’s for trip-level passenger-miles at 
stages 2 and 3 are: 

cv2 = 0.9 = cv oftimetable trip means (within rroute) 

cv3 = 0.3 = cv ofdaily passenger-miles 

((within a given timetable trip) 

The assumed values are conservative estimates based on 
experience with data from many transit agencies. The values 
reflect the fact that, for a given route, most variation in trip-
level passenger-miles is due to differences in where trips fall 
within the timetable (peak/off-peak, inbound/outbound), 
rather than random differences between days. Sample size 
requirements derived in this section are based on the week­
day sample only; the addition of weekends, sampled with the 
same degree of fleet penetration as on weekdays, will improve 
precision, although not by much. 

The effective penetration rate (f3) is defined as the expected 
fraction of the daily schedule observed each day. It is the 
product of fleet penetration rate and data recovery rate. 

Covering Every Weekday Trip 

With an effective fleet penetration rate as small as 1% and 
careful rotation, every weekday timetable trip can be observed 
at least once per year. The annual estimate is determined by 
calculating average passenger-miles for each timetable trip, 
expanding by number of days that trip was operated, and 
summing over all timetable trips. Stratifying to this level is a 
very effective estimation technique because it eliminates the 
effect of variability between timetable trips. The weekday 
sample size requirement is 

2 
n � max (N ,(0 3. rse  )	 7)	 ( ) 2 

where N2 equals the number of weekday timetable trips and 
rse is the permitted relative standard error from Table 11. For 
bias up to 8% and for all but the smallest transit systems, the 
N2 term will control; that is, it is sufficient to simply observe 
every timetable trip once. 

Covering Most Weekday Trips 
(Two-Stage Sampling) 

Logistics and data recovery problems can frustrate plans 
to observe every weekday timetable trip. The following plan 
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Figure 20. Timetable coverage rate required versus timetable size. 

assumes that only a percentage ( f2) of the timetable trips 
is covered. The estimation procedure is to get an average 
for each timetable trip that was observed, determine the 
route average (per trip), expand each route average by the 
number of trips operated per year, and then sum over all 
routes. 

The relative standard error of the estimate is given by 

2 2


2 2 3
rse = cv 
1 f ) + cv 

( )( − 8 
f N  

2 
Df N 2 2 3 2 

where D is the number of weekdays in the year (about 252). 
For all but the smallest transit systems, the third term will be 
insignificant, and the size of the relative standard error will 
depend mostly on f2. 

Using equation 8, Figure 20 shows the required timetable 
coverage f2 versus the number of trips in the timetable (N2) 
for selected values of bias and effective penetration rate. 
Degree of coverage is restricted to values of 85% or greater, 

because lower coverage rates suggest poor logistical manage­
ment with likely sampling biases (e.g., whole routes being 
missed or seriously undersampled). With 5% bias, 85% cover­
age is sufficient even for an agency with only 200 trips in the 
weekday timetable and 1% effective penetration. Only smaller 
systems with moderate to large bias will need greater timetable 
coverage or effective penetration. 

9.2.3 Intentional Sampling 

The recommended estimation procedures just described 
involve unintentional sampling—the APCs collect data all 
year long, and the agency just rolls it up. This approach 
assumes that instrumented buses, for reasons beyond NTD 
passenger-miles estimation, are being circulated in a manner 
that covers the entire schedule regularly. Intentional sampling 
methods with limited sample sizes are clearly inferior, unless 
data processing procedures are still so undeveloped that each 
trip’s data must be manually checked. 
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C H A P T E R  1 0  

Designing AVL Systems for Archived 

Data Analysis 

One of the hard lessons learned is that off-line analysis 
has different data needs than real-time monitoring and that, 
therefore, AVL systems designed for real-time monitoring 
may not deliver the type and quality of data needed for off­
line analysis. Considering the ways off-line data can be used 
to improve operations and management, and considering 
the way AVL system design affects what data is captured as 
well as its quality, this chapter presents findings related to 
AVL system design. 

The emphasis of this chapter is on AVL rather than APC 
system design because APCs have always been designed for 
off-line analysis. To a large extent, this chapter summarizes 
Furth et al. (6). 

10.1	 Off-Vehicle versus On-Vehicle 
Data Recording 

There are two options for recording data with AVL systems: 
on-vehicle (in an on-board computer) or off-vehicle (by 
sending data messages via radio to a central computer). As 
discussed in Section 2.3, the radio channel capacity limits an 
AVL system’s ability to record data over the air. On-vehicle 
data storage is clearly superior in that it presents no effective 
limit on data recording. 

Where radio-based systems are still contemplated, buyers 
must learn the capacity of any proposed system to collect 
timepoint and/or stop data, along with random event data. 
Capacity depends on the number of radio channels available, 
the number of buses instrumented, message length, and 
specifics of the technology used. The number of radio chan­
nels available to a transit system is strictly limited and varies 
by location, because radio channels are allocated by govern­
ment. Radio-based systems have been successfully configured 
to record useful data for off-line analysis; for example, Metro 
Transit’s system makes timepoint records from all buses and 
stop records from about 15% of the fleet by sending messages 
over the air to a central computer. 

10.2	 Level of Spatial Detail 

As discussed in Sections 2.3.1 and 4.2.1, the choices in 
spatial detail of basic AVL records are polling records (occur­
ring at arbitrary locations, when the bus is polled), time-
point records, and stop records. Collecting data at a finer 
level is also possible. 

10.2.1 Time-at-Location and Location-
at-Time Data 

Polling data can be characterized as location-at-time data, 
giving bus location at an arbitrary time; stop and timepoint 
records, on the other hand, have time-at-location data, giving 
the time at which a bus arrives or departs from a specific loca­
tion. Most off-line analyses, including analyses of running time 
and schedule adherence, require knowledge of departure time 
from standard locations. Therefore, stop and timepoint records 
are inherently better suited to off-line analysis of AVL data. 

Theoretically, time-at-location could be estimated from 
polling data by interpolation. This method introduces inter­
polation errors, whose magnitude can be almost as large as 
the polling interval on segments in which the plausible bus 
speed has a wide range (e.g., because of intermittent traffic 
congestion). During periods of traffic congestion, it can be 
difficult with polling data to determine whether a bus report­
ing coordinates close to a stop is in a queue waiting to reach 
the stop, is at the stop, or has already left the stop and is wait­
ing in a traffic queue. 

The project survey did not find a single case of a transit 
agency routinely using polling data for off-line analysis 
except for playback to investigate incidents. Researchers used 
such a data stream from Ann Arbor for some operational 
analyses (41), but the process of going from raw poll messages 
to trajectories matched to route and schedule was too involved 
to become routine. The three case study agencies with round-
robin polling data do not use it off line except for incident 
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investigation using playback. Also, the survey indicates that all 
of the traditional AVL suppliers, even if they still use polling 
to support real-time applications, include timepoint records 
in their data streams as well. 

However, a relatively new entry to the market, stand-alone 
“next arrival” systems, uses only polling data to track bus loca­
tion. Like earlier AVL systems, they are designed around a real-
time application and, according to the interviewed vendor, use 
polling data to minimize the amount of equipment installed in 
the vehicles, making such systems less expensive. This vendor 
claims to have obtained good test results using the data from its 
system for off-line analysis of on-time performance. The next 
arrival system’s data stream includes predicted arrival time at 
stops (based on proprietary algorithms); as buses get close to a 
stop, predicted arrival time should become a rather accurate 
measure of actual arrival time, especially if the polling cycle is 
short, and therefore might be used as an approximation. A 
drawback of next arrival systems is that, while their application 
focuses on arrival time, most running time and schedule 
adherence analyses are concerned with departure time. 

10.2.2 Timepoint versus Stop-Level 
Data Recording 

Given that obtaining time-at-location data is important, 
what location detail is needed: stop level or timepoint level? 
Of course, stop-level data is needed for passenger counts; but, 
for operations analysis, what is the incremental value from 
getting data at all stops as well as at timepoints? 

Because scheduling practice in the United States is based on 
timepoints, timepoint data is all that is needed for traditional 
running time and schedule adherence analyses. Metro Transit’s 
AVL-APC system design emphasizes this distinction: on buses 
with APCs, stop records are created; while, on buses with only 
AVL, only timepoint records are created. Timepoint data tends 
to be favored by systems that rely primarily on radio transmis­
sion for data recording, because timepoint messages do not 
consume much radio channel capacity–timepoint messages are 
not very frequent and tend to be rather short, including only 
timepoint ID, time and location stamp, and identifiers. (Inter­
estingly, this issue does not arise in the Netherlands, because 
almost every stop is a timepoint there. Also, stop spacing in the 
Netherlands tends to be about 60% greater than in the United 
States, resulting in fewer stops.) 

However, stop-level detail offers advantages to a transit 
agency willing to go beyond traditional scheduling and oper­
ations analyses. Those advantages stem from (1) finer geo­
graphic detail for operations analysis and planning, and 
(2) the fact that stops are where customers meet the system, 
making stops a natural unit for customer-oriented schedul­
ing and service quality analyses. In Section 4.4.5, several 
advantages of stop-level scheduling were cited, including bet­

ter customer information (both off line, as part of trip plan­
ning, and in real time, for predicting arrival time), finer con­
trol, and ability to apply conditional (schedule-based) signal 
priority. Stop-level analysis helps enable operations analysis 
to identify points of delay, determine the impact of changes 
to stop location or traffic control, and analyze bunching. 
Stop-level data also permits more customer-oriented service 
quality analysis, such as enabling determination of passenger 
waiting time at stops. 

With stop-level data, bus arrival and departure times are 
easier to determine at the end of the line. If the last segment’s 
data is unreliable, what is lost becomes much smaller with 
stop-level data. 

The practice of making timepoint, but not stop, records 
appears to be partly a relic of past practice, partly a limitation 
of radio-based data communication, and partly a simplifica­
tion (for example, an agency with timepoint records only has 
to make sure its timepoints are mapped correctly, not all its 
stops). In today’s technology age, with on-board data storage 
possible at relatively little cost, there seems little reason to set­
tle for less than stop-level data. 

10.2.3 Interstop Data 

Automatically collected data on what happens between 
stops is not nearly as important as data about stops. How­
ever, there is nearly no marginal cost to making interstop 
records, which can support some useful applications. Exam­
ples include monitoring maximum speed (both as a check for 
speeding and as a measure of quality of traffic flow), moni­
toring time spent below crawl speed (as a measure of delay), 
and treating the bus as a GPS probe for mapping bus paths. 
Another possibly valuable use, mentioned earlier, is to analyze 
operations at terminals to help better determine actual arrival 
and departure times. 

One possible configuration, applied at NJ Transit, permits 
records at regular, user-set intervals; for mapping a bus’s path, 
the interval can be made quite small. Eindhoven’s configura­
tion, in which a record is made whenever speed crosses a 
crawl-speed threshold, can be generalized. By using a few dif­
ferent thresholds, users could estimate not only delay (time 
spent below crawl speed), but also a speed profile, which 
might be used to characterize traffic quality or to monitor 
speed in different speed zones. Tri-Met’s configuration, in 
which only maximum speed between stops is recorded, is 
partly a concession to limited on-board data storage (which 
was an important factor in the mid-1990s). Given the current 
availability of low-cost on-board data storage, frequent inter-
stop records can easily be accommodated. However, until 
now, the value of much interstop detail was not yet proven. 

Frequent interstop records detail can aid in matching. For 
instance, speed records may help resolve situations such as 
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when a bus stops twice at the same stop, is jockeying around 
at a layover, or holds (to avoid running early) away from a 
stop. NJ Transit is interested in using frequent interstop 
records for improving maintenance management by correlat­
ing operations measures with maintenance needs, particu­
larly if future generations of its data collection system can 
integrate data from the vehicle drivetrain system. 

10.2.4 Arrival/Departure Time Accuracy 

AVL systems vary widely in the data captured with respect 
to arrival and departure time at stops and timepoints. Some 
off-line analyses need arrival time, some departure time, and 
some both. Therefore, an AVL system will be more valuable if 
it detects and records both arrivals and departures. Door sen­
sors and the recording of door open and close events help 
improve the accuracy of arrival and departure detection as 
well. For example, suppose a bus stops two or more times in 
the neighborhood of a stop. Was the first the stop and the sec­
ond simply traffic delay, or was it the reverse? Or did the bus 
open it doors both times, so that arrival time should be taken 
from the first stop and departure time from the second? 

Without a door sensor, arrival is frequently detected by a 
vehicle entering a 10-m radius zone around a stop. Around 
major stops and terminals, the zone can be quite a bit larger, 
which can distort arrival time if a bus faces congestion getting 
to the stop (e.g., because a traffic queue or another bus is block­
ing the stop). Likewise, zonal detection can distort departure 
time if departing buses encounter congestion before leaving 
the stop zone, which can happen at near-side stops, at stops 
where buses have to await a gap or yield to crossing pedestrians 
before entering the traffic stream, and at terminals. 

Knowing both when doors close and when the bus actually 
departs is valuable for detecting holding, which is important 
for running time analysis. Because of the possibility of hold­
ing, door close events are not sufficient to determine depar­
ture time. Therefore, while door sensors are valuable, they are 
not sufficient. (In many Latin American cities, where buses 
routinely operate with doors open, they are almost useless.) 

10.2.5 Route Endpoint Identification 

As mentioned earlier, many AVL systems are weak in deter­
mining when a bus arrives and departs a route terminal. For 
running time and schedule adherence analyses, these data 
items are critical, and system features that make their correct 
identification easier are valuable. Such system features include 
door open and close records, frequent interstop records in ter­
minal regions, odometer-based records to supplement GPS-
based records in terminal regions, and better algorithms for 
interpreting bus movements in terminal areas in order to bet­
ter distinguish genuine departures from movements within a 

terminal area. When route terminals are located in zones with 
poor GPS reception (downtown or a covered terminal), data 
from supplemental devices and logic to interpret it are espe­
cially valuable. 

10.3 Devices to Include 

Integrating other devices in an AVL or APC system can add 
value either because the data those devices provide is inher­
ently valuable or because of synergies that make the new data 
helpful for interpreting other AVL data. 

Door sensors have already been mentioned for their value 
to help match location, determine arrival and departure 
times, and identify control time. APC systems virtually always 
include door sensors; their inclusion in AVL systems would be 
a benefit as well. 

Odometer (transmission) data is helpful for determining 
bus speed, which can be valuable in its own right, and can 
be used to determine when a bus departs from a stop and 
when/where buses are delayed in traffic. Most AVL systems 
have odometer connections as a backup to GPS or to determine 
distance traveled between signposts. 

Gyroscopes add richness to the data provided by odome­
ters, allowing vehicles to be tracked off route and permitting 
matching based on turning locations. 

Recording fare transactions in the AVL data stream is a 
means of getting location-stamped boarding data, which can 
be especially valuable to a transit system lacking APCs. When 
the payment medium is electronic and therefore offers an ID 
unique to the passenger, location-stamped fare transaction 
data offers the further opportunity for inferring link-trip and 
transfer information. However, there has been little experi­
ence to date with location-stamped fare records; this area has 
considerable opportunity for research and development. 

Integrating the radio system’s control head offers the 
opportunity to capture records of sign-in data, valuable 
for matching, and of operator-observed or -initiated events 
including pass-ups, special passengers (e.g., wheelchair and 
bicycle users, fare evaders), and traffic events (e.g., draw­
bridge up). These event records provide data that is valuable 
in its own right for direct analysis. Such records can also add 
detail and accuracy matching to running time and service 
analyses, for example, by helping to confirm and perhaps 
explain long delays or indicating when the “everybody 
boards the first bus” assumption behind waiting time calcu­
lations is violated. While radio-based systems always benefit 
from this connection, it would also benefit passenger count­
ing and event recording systems. Also of potential value, but 
not yet applied (to the researchers’ knowledge), would be 
coded records of standard radio messages initiated by the 
control center, such as instructions to hold for a connecting 
passenger. 
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Integration with the wheelchair lift (or lift sensors) would 
provide a more accurate and automated record of lift use than 
relying on operators to initiate a message. 

Integration with the destination sign might prove useful to 
help with matching. 

Integration with a stop announcement system or next 
arrival system does not bring in any new data; however, it cre­
ates an incentive for stop matching to be accurate and thereby 
benefits AVL-APC data analysis. 

AVL systems have long attempted to use data from the vehi­
cle’s mechanical system (in addition to that from the odome­
ter), such as oil temperature and air pressure. In real time, 
alarms from these systems have delivered so many false posi­
tives that they tend to be ignored. Whether the recording and 
off-line analysis of mechanical data integrated with location 
data can deliver new insights on mechanical performance is a 
rich area for further exploration. 

10.4	 Fleet Penetration 
and Sampling 

AVL systems, when installed, are usually installed on the 
entire fleet. APCs have traditionally been installed on about 
10% to 15% of the fleet. 

Chapter 9 discusses how fleet penetration affects sample 
size, and what sample size need is for passenger count–related 
data items such as load, boardings, and passenger-miles. The 
general principle is that if the data is used only to determine 
mean values, small samples are sufficient; however, when 
extreme values are important, a complete or at least large 
sample is preferred. For passenger count data, 10% penetra­
tion is more than enough for boardings and passenger-miles 
data, for which only mean values are needed. For load on 
crowded bus routes, a near-complete sample is desirable so 
that extreme values can be observed. With a small fraction of 
the fleet instrumented, large sample sizes can still be obtained 
from crowded routes if the instrumented buses are dispro­
portionately allocated to crowded routes. 

On the side of operations data, only near-100% penetra­
tion will provide the large sample sizes needed to determine 
extreme values used in statistically based running time analy­
sis and design. With a small fraction of the fleet equipped (as 
in a traditional APC system), large sample sizes can be obtained 
by aggregating over time, but at the risk of some of the data 
being out of date. 

Headway analysis requires 100% instrumentation on a route 
at a given time, which can only be achieved with either 100% 
penetration or careful allocation of the instrumented sub-fleet. 

Another benefit of full coverage is the ability to investigate 
complaints. As many complaints arise from extreme events 
(long waits, overcrowding), full coverage would be most help­
ful in such investigations. 

Many transit agencies report that managing the allocation 
of an instrumented sub-fleet can be a large headache and 
that concerns other than data collection (e.g., who gets the 
new buses) often control the allocation, frustrating data col­
lection plans. 

A major motivation for instrumenting only a fraction of the 
fleet with APCs has been their cost. Tri-Met has shown that by 
integrating APCs with an AVL system, the incremental cost of 
an APC can be reduced to the $1,000 to $3,000 range; Tri-Met 
now treats them as standard equipment included in all new bus 
purchases. Note that Tri-Met uses a rather simple-technology 
APC and that more complex and (presumably) accurate APCs 
may not offer such an attractive incremental cost. 

10.5	 Exception Reporting versus 
Exception Recording 

Exception reporting is certainly a valuable management 
tool, available for use with any AVL-APC data archive. It 
should be distinguished, however, from “exception record­
ing,” the practice of only recording a bus’s location if it is off 
schedule or off route. This protocol of exception recording 
does not permit analysis of normal operations and should 
therefore be avoided. 
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C H A P T E R  1 1  

Data Structures That Facilitate Analysis


As mentioned in earlier chapters, original APC data con­
sists chiefly of stop records, plus possible sign-in records. 
Original AVL data consists of stop or timepoint records, sign-
in records, and records of various other events. It may also 
include polling records. 

For analysis, these data records have to be screened and 
possibly corrected. Data that is not matched to a route and 
schedule should be matched. Beyond cleaning and matching, 
certain data structures may need to be created in the analysis 
database in order to facilitate analysis. Header and summary 
records offer some convenience for queries and analyses 
involving aggregation. Special data structures are needed to 
deal with multiple pattern analyses that are more than simple 
aggregations. Modularity in analysis procedures can also be 
enhanced by using standard, specialized database formats. 

11.1 Analysis Software Sources 

Software used in practice to analyze archived AVL-APC 
data can come from five different sources: in house, the AVL­
APC vendor, a scheduling software vendor, a third party with 
a standard product, and a custom software developer. Each 
arrangement has its advantages and drawbacks. 

11.1.1 Software Developed in House 

Much of the current analysis of archived AVL-APC data 
uses home-grown software tools. This arrangement has 
worked well for some agencies, allowing them the flexibility 
to adapt to their particular needs and enterprise databases 
and ensuring that tool development is closely tied to need and 
likely use. For pioneering agencies, developing their own soft­
ware was a necessity. 

Since the mid-1990s, self-developed database and report­
ing software for AVL-APC data has used commercial off-the­
shelf (COTS) database platforms on PC networks. COTS 
platforms have the advantage of being less expensive and ben­

efit from regular upgrades, necessary in this age of techno­
logical advance. Coding for standard and ad hoc reports is 
prepared either in a database query language or using report-
generating software such as Crystal Reports and Brio. Analyses 
that demand more complex calculations are often performed 
with spreadsheets or statistical analysis packages, with database 
queries used as a front end to select the data for analysis. One 
disadvantage of COTS database platforms and reporting soft­
ware is that they can be slow when a lot of data is involved. Some 
agencies have found that powerful report-generating tools 
(available at 3 to 10 times the cost of their low-end counter­
parts) help overcome this problem by periodically pre-staging 
the data most likely to be used in reports and analyses. 
Response speed for large datasets can also be reduced by use 
of special data structures optimized for fast data retrieval. 

Tri-Met is an example of an agency whose AVL-APC data 
analysis software was developed in house. Data is stored and 
managed in an Oracle database. Using a query language, 
selected data (e.g., by route, direction, times, dates) can be 
extracted. Extracted data is then imported to a commercial 
statistical analysis system (SAS) for numerical analysis. 
Scripts for standard queries and analyses are stored and 
reused. Sometimes results are imported to Microsoft Access 
for easier formatting. 

King County Metro, with separate AVL and APC systems, 
uses multiple databases and applications. Its AVL data is stored 
in an Informix database. For schedule deviation analysis, 
scripts coded in Microsoft Access provide a friendly user 
interface for selecting AVL route, direction, time, date range, 
and so forth. The analyses themselves were programmed in a 
query language and are performed by Informix, which pro­
duces output in the form of Microsoft Excel tables and 
graphs. Analysts may do further manipulations of the Excel 
tables. For running time analysis, a query language program 
runs every 2 weeks on the AVL Informix database, extracting 
data that is then input to their scheduling package, Hastus, 
which includes the add-on software product ATP for running 



71 

time analysis. Raw APC data is kept in an Oracle database. 
Using programs prepared in the Focus query language, sum­
mary records are created and exported to a Microsoft Access 
database, which has been programmed to offer a friendly user 
interface and nice reports. There are also standard reports cre­
ated using query language from the original databases. 

Metro Transit, a third example, analyzed running time data 
from its now obsolete AVL system using macros written in 
Microsoft Excel, once the analyst had extracted the data of 
interest from the database. In its new AVL system (now in 
implementation), Metro Transit is working with the AVL ven­
dor to define analysis and reporting needs; they plan to share 
responsibility for development of analysis software. 

Two final examples are NJ Transit and Broward County 
Transit, whose APC/event recorder and AVL systems (respec­
tively) are operational and expanding. They are using COTS 
database platforms for data management and COTS report-
generating software Brio and Crystal Reports for analysis. 

Unfortunately, developing one’s own database and report­
ing software demands resources and expertise that are beyond 
the reach of many transit agencies. Because of differences in 
software platforms and data formats, tools developed at one 
agency are usually not transferable to another. 

11.1.2 Software Supplied by 
Equipment Vendors 

Software supplied by some APC vendors provides useful 
reports including on/off/load profiles, running time distribu­
tions, and on-time performance. However, it usually lacks 
flexible query capabilities. 

Historically, AVL vendors provided software related to real-
time applications only; for archived data analysis, their job 
ended when they handed the transit agency the data. Often, 
the only archived analysis tool is the ability to play back the 
AVL data stream. Some AVL suppliers include a genuine data­
base and analysis function, but tend to offer only elementary 
analyses such as on-time performance percentages and reports 
on how often various event codes were transmitted. For two 
of our case study agencies, AVL vendors are developing more 
comprehensive database and analysis capabilities as part of 
their procurement contracts. 

Software that is coupled to on-board equipment limits the 
flexibility to add other on-board equipment or to replace 
aging equipment with equipment from a different vendor. 
The vendor may go out of business or may not continue to 
improve the software. Furthermore, a note of caution comes 
from reviewing 20 years of industry experience with farebox 
data. While the major electronic farebox vendors also supply 
software for analyzing farebox data, most larger U.S. agencies 
who rely on farebox data for monitoring ridership have found 
that they had to export the data to a database developed in 

house to run their own reports because the vendors’ software 
did not provide the flexibility they needed. 

11.1.3 Software Supplied by Scheduling 
System Vendors 

Analysis programs offered by scheduling system vendors 
focus on analyzing running time data to suggest scheduled 
running times. An example is the tool used at King County 
Metro. Because it is tied to the scheduling system, its suggested 
scheduled running times can be semi-automatically entered 
into the scheduling system database. Ironically, for the version 
seen in the 2002 case study, its running time analysis is per­
formed without reference to scheduled departure times or 
headways and, therefore, cannot analyze schedule or headway 
adherence, or report results for particular scheduled trips. 

Software coupled to the scheduling system has many of the 
same disadvantages as software coupled to an equipment ven­
dor. One case study agency that uses such a tool for running 
time analysis has to use its own database and software tools 
for other analyses and ad hoc queries. 

However, one advantage of this source of software is that 
for scheduling system vendors, software development is their 
business. If they take on AVL-APC data analysis seriously, 
they are well positioned to develop some very good tools and 
to maintain them. With many customers worldwide, they are 
in a good market position if they choose to exercise it. 

11.1.4 Third-Party Software 

In the Netherlands, Delft University of Technology’s Trans­
portation Engineering Laboratory has developed the database 
and reporting software TriTAPT for detailed analyses of AVL 
and APC data. Various editions have been applied over the last 
20 years to several Dutch transit agencies; the current edition 
is being used in Eindhoven and in the Hague. It features many 
useful single-route reports; excellent graphical representa­
tions, including proportional scaling to represent distance and 
time intervals; attention to distributions and extreme values as 
well as mean values; a graphical user interface for selecting 
days and times to be included in an analysis; edit capability 
that allows an analyst to suppress outliers; and practical tools 
for suggesting scheduled running times. It has been applied 
with data gathered using a variety of automated data collec­
tion equipment, including APCs, event recorders, and AVL 
systems of different makes. Interfaces have been developed to 
scheduling system databases. It uses a custom database to 
speed processing, but includes an export and import utility so 
that data tables can be transferred to and from text files. 

In Germany, the Hannover transit system Uestra developed 
its own database and reporting software for AVL data; a related 
spin-off company has recently commercialized it. 
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In the United States, to the researchers’ knowledge, the first 
application of third-party software for analyzing AVL data is 
under way at CTA for use with a new smart bus system that fea­
tures stop announcements and event recording on all buses and 
passenger counting on a sample of the fleet. Called RideCheck 
Plus because its analysis reports were originally developed for 
ride check data, it includes many standard analyses (e.g., load 
profiles and schedule adherence) and also offers some GIS capa­
bilities including links with demographic data and mapping. 

Third-party software for analyzing archived AVL-APC data 
has the advantage of modularity, not being tied to any partic­
ular brand of equipment or scheduling system. As a stand­
alone product, it is likely to continually improve, unless the 
product is discontinued. It offers the benefits of standardiza­
tion and replication. A major disadvantage of third-party 
software in the United States is that transit agencies’ funding 
mechanisms often forbid them to buy software only for data 
analysis, although such a purpose often can be justified within 
the context of a major AVL or APC system procurement as 
was the case at CTA. 

11.1.5 Software Developed 
for Custom Analysis 

Several specialized AVL analyses by university research teams 
have been reported in the literature, including the previously 
mentioned analyses done at the University of Michigan using 
Ann Arbor Transit Authority AVL data and at Morgan State 
University using (Baltimore) MTA data. In both of these cases, 
the specialized processing required to analyze these datasets left 
them inaccessible to staff analysts. In contrast, Tri-Met’s APC 
database, developed in house, supports analyses by both staff 
analysts and researchers from Portland State University. 

11.2 Data Screening and Matching 

As AVL and APC data is retrieved, it usually undergoes some 
“entry processing” before being entered into the archive data­
base. Entry processing involves screening for and perhaps cor­
recting errors. If data is not already matched, entry processing 
includes matching data to the schedule and base map. Data that 
cannot be matched, or is rejected in the screening process, is 
logically rejected (usually, not by discarding the data, but by 
flagging it as unusable). Some AVL-APC databases have flags 
indicating “don’t use counts” (for passenger counts that were 
rejected) and “don’t use times” (for invalid time data). 

Screening involves typical checks for consistency and 
range. For example, passenger count data will be rejected if on 
and off totals for a vehicle block differ too much. 

While processing AVL-APC raw data is usually automated, 
daily monitoring by a skilled analyst is valuable, at least during 
the break-in phase of a system, to see what data was rejected 

and why. Failure patterns can indicate a need for on-board 
equipment to be repaired or adjusted or for the base map or 
schedule to be updated. Some transit agencies have developed 
semi-automatic correction processes. For example, Houston 
Metro’s screening program checks operator and run codes 
against the dispatch database; if a small discrepancy is found 
that could be explained as a simple keying error, it is either 
corrected automatically or brought to the attention of a 
person monitoring the process who can make or authorize 
the correction. 

11.2.1 Full and Partial Matching 

A large part of entry processing is checking location and 
time stamps for a match against the schedule and base map. 
A fully matched record will indicate the stop or timepoint ID, 
the scheduled trip ID, and the scheduled departure time from 
the stop or timepoint. Matching to stop ensures that records 
will be analyzed in the right sequence, and matching to sched­
uled departure time allows analysis of schedule adherence 
and selection of trips based on scheduled departure time. 

In some AVL-APC systems, stop and timepoint records 
are already matched to stop and scheduled trip; processing 
simply checks for consistency. Other AVL-APC data streams 
have to be matched during entry processing. For example, 
Tri-Met’s AVL data records have only vehicle block ID, with 
time and GPS coordinates. Matching correlates GPS coor­
dinates with stops, parses trips, and adds trip ID and sched­
uled departure time fields from a table correlating trips 
with blocks. When the vehicle block is known, tracking is 
much easier. 

For stop records, matching can include checks for whether 
consecutive stop records should be merged, as when a bus 
closes its doors and advances a few feet, but then reopens its 
doors to let some more passengers in or out. In Tri-Met’s 
entry processing, multiple stop records for the same stop are 
not directly merged; rather, a flag indicates which records are 
“primary” (the first stop record for a given stop) versus “sec­
ondary.” Calculation routines are programmed to logically 
merge secondary stop records with their primary record. Stop 
or timepoint record processing may also involve inferring 
arrival or departure time by adding or subtracting a constant 
travel time from the recorded time, when the recorded time 
occurs a known distance from the stop or timepoint. 

In many AVL systems, a bus passing a stop or timepoint 
without stopping will cause a stop or timepoint record to be 
generated on board. If not, records for stops that were skipped 
can be generated as part of the matching process, as is done at 
Tri-Met. 

If polling data were to be used for more than playback 
analysis, matching would be done as part of entry processing 
to create stop records from it. 
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In some analysis databases, records are only partially 
matched. For example, they may indicate the timepoint, but 
not the scheduled trip. This kind of record can support many 
types of analysis, such as analysis of running time between 
timepoints. However, without matching to scheduled trip, 
control time cannot be inferred because it becomes impossi­
ble to know whether a bus was running early. (In principle, 
one could analyze schedule adherence by comparing the array 
of scheduled departures with the array of observed depar­
tures; however, the reality of missing data makes a simple 
comparison impractical.) 

Including a field for scheduled departure time enables 
selection based on scheduled times. Without scheduled depar­
ture time as a field in a stop or timepoint record, one can 
select data for analysis based on a range of actual departure 
times (e.g., analyze all the trips that began between 7:00 a.m. 
and 9:00 a.m.); that kind of analysis is often done for run­
ning times. A disadvantage of selection based on actual run­
ning times is that the set of trips included on any given day 
can vary depending on whether trips near the period bound­
ary departed before or after the period boundary; such vari­
ation in the numbers of trips included in a day’s analysis can 
distort results. 

11.2.2 Trip Parsing 

Matching also involves parsing the data stream for a given 
block/day by trip. Many of the issues involved in identifying 
trip endpoints have been discussed in Section 2.2.5. Parsing 
passenger counts at trip ends is discussed at length in Chap­
ter 8. One common parsing operation is converting a single 
record indicating the end of one trip and start of another into 
two records, one for each trip. 

11.2.3 Trip Header Records 

Entry processing can involve the creation of header records 
for trips and blocks. (Trip summary records, which serve a 
different purpose, are described later.) Header records, which 
are part of TriTAPT’s data structure, help organize the data­
base and make selection quicker. The header record for a trip 
contains pointers to that trip’s stop records, as well as trip-
level information such as route ID, trip ID, and scheduled and 
actual trip departure times. These header records make 
queries faster, as the query only has to determine which trip 
headers meet the selection criteria. Many databases, includ­
ing Tri-Met’s, function without trip headers, including all the 
header information in each stop record. Queries directly 
select stop records, which can make queries slower in a large 
database. 

For a trip header, an alternative (or supplement) to 
scheduled and actual departure times from the start of the 

trip is departure or arrival time at a designated key point, 
which may be different from the starting point. On radial 
routes, the time at which a trip enters or leaves the down­
town may be a more meaningful choice for categorizing 
it by period than the time it began; this distinction can 
be especially important if a system has a mix of short and 
long routes. 

As mentioned in Chapter 8, several transit agencies are 
hoping to move to trip-level passenger count screening and 
correcting as part of entry processing. If that is done, the 
number of inherited and bequeathed passengers determined 
for each trip can be incorporated as fields in the trip header 
records. 

11.3	 Associating Event Data 
with Stop/Timepoint Data 

For most routine analyses of AVL-APC data, the funda­
mental record type is the stop or timepoint record. However, 
several analyses involve data from other types of event 
records or from interstop records. Examples include infor­
mation about pass-ups or wheelchair lift use (which occur 
at stops but may be recorded as a separate event), and max­
imum speed or drawbridge delay (which occur between 
stops). One database issue is how to associate data on those 
kinds of events with stop or timepoint records so that they 
can play a part in passenger count or running time reports, 
for example. 

11.3.1 Adding Fields to Enrich Stop 
or Timepoint Records 

One way of associating the information contained in other 
types of records with stop records is to add to stop or time-
point records fields summarizing information from other 
record types. As an example, stop records in Eindhoven’s Tri-
TAPT database include fields for segment delay and control 
(holding) time. Segment delay is calculated as part of the 
entry processing of AVL data, using records of buses crossing 
a crawl speed threshold to calculate the amount of time 
between a pair of stops spent stopped or below crawl speed, 
excluding time spent at the stop. Likewise, control time is cal­
culated based on whether a trip was early and how long its 
dwell time was. Because each TriTAPT stop record contains 
information on both a stop and the segment following it, it is 
called a “stop module” record. 

In Tri-Met’s database, a field for maximum speed achieved 
on each preceding segment is part of the stop record. In fact, 
this field is filled on board when the stop record is created, 
rather than as part of entry processing. 

Because AVL systems in the United States record a variety 
of event types that can be relevant to operations analysis, part 
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of this project involved making the structure of the TriTAPT 
database more flexible, allowing an agency to include any 
number of fields in a stop record. Examples are numeric fields 
for maximum speed and binary fields for whether a particu­
lar event type (e.g., pass-up or drawbridge delay) occurred at 
the stop or on the segment following. 

Incorporating interstop summaries in the stop record 
provides adequate geographic detail for many purposes. 
Where an interstop segment does not provide adequate 
geographic detail (e.g., if there are two traffic bottlenecks 
between stops and the delay at each bottleneck needs to be 
identified), analysts can simply add a dummy stop to the 
base map. 

If the database’s fundamental record is a timepoint rather 
than stop record, the length of a timepoint segment creates 
a considerable loss in geographic detail if events that occur 
at stops and en route are simply labeled as occurring on 
a timepoint segment. For some analyses, however, this loss 
of detail is unimportant. For example, in a running time 
analysis, it may be sufficient to know how often the bicycle 
rack or wheelchair lift is used on each timepoint segment; 
where on the segment it was used does not matter. How­
ever, if it does matter, one could query the original event 
records. 

11.3.2 Matching Other Record Types 

An alternative to incorporating summaries into stop records 
is to associate each event record with a stop (either where the 
event occurred or the last stop visited for en route events) and 
departure time, just like stop records are matched. Tri-Met fol­
lows this approach, adding to event records fields indicating the 
nearest stop and distance from that stop. 

Analyses that want to merge stop record information with 
information from other event record types can select multi­
ple record types and use the stop and scheduled trip as keys 
to correlate records. Of course, that kind of on-the-fly merg­
ing of data from multiple record types is more complex and 
time consuming than one in which the data was merged dur­
ing entry processing, but it is also more flexible. If event 
records are not labeled with a stop or timepoint, matching 
and merging them on the fly with stop or timepoint records 
would be impractical. 

From the survey, the use of event records other than stops 
and timepoints appears to be only on an ad hoc, analyst-
intensive basis. For example, seeing an unusually large run­
ning time might prompt an analyst to query whether there 
was an event that caused a major delay on a segment or a spe­
cialized study might query bicycle rack events to get an idea 
of where they occur. However, to the researchers’ knowledge, 
bicycle rack events and similar event data are not part of rou­
tine running time or demand analysis tools. 

11.4	 Aggregation Independent 
of Sequence 

Almost all analyses other than incident investigation involve 
aggregation: over multiple days of observation, over multiple 
stops or segments, over multiple scheduled trips in a day, over 
multiple patterns that make up a line, or over multiple lines. 

An important distinction in aggregation is whether an 
analysis has to follow a sequence of stops or trips. In many 
analyses, stop and trip sequence are irrelevant; once the 
appropriate stops and trips have been selected, the result is a 
simple aggregation. Examples include total ons; maximum 
load; and number of timepoint departures that are early, on 
time, and late. Summary measures that do not involve calcu­
lations along a sequence of stops can easily be summarized 
over multiple patterns and multiple lines and lend themselves 
also to comparison between lines. 

11.4.1 Summary Records for Routine 
and Higher Level Analyses 

Transit agencies often have certain routine analyses that 
involve this simple type of aggregation. To reduce processing 
time, summary records can be created at the trip level, con­
taining such items as total ons; maximum load; and number 
of timepoint departures that are early, on time, and late. An 
analysis such as average or distribution of boardings per trip 
on a route, or percentage of early/on-time/late departures, 
can be performed using those trip summaries. Higher level 
summaries (e.g., aggregating over a week or month, or over a 
period of the day, or both) can speed processing for reports 
needing only summaries at that level, such as quarterly route 
performance reports and historical trend analysis. 

At higher levels in a transit agency, reports using AVL-APC 
data often involve data from other sources as well, such as data 
on revenue, accidents, or customer satisfaction. This kind of 
report is best generated by a general management database. 
The AVL software’s responsibility is to create summary records 
that can be exported to the general management database, 
which also can be used for comparison reports, historical trend 
reports, and other such higher level reports. At Brussels’ tran­
sit agency, for example, the AVL system generates line-level 
summaries of schedule adherence and passenger waiting time 
for every 2-week period; those summaries are exported to the 
general management database that is used to analyze route per­
formance along many dimensions. Of course, this arrangement 
requires a well-developed enterprise database to receive the 
AVL summary records. 

Planning analyses, including those that use a GIS, generally 
want to use long-term average passenger count, running time, 
and service quality data. AVL-APC systems can supply those 
averages and export them to the planning/GIS database. 
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When summary records are created, it is still important to 
preserve the possibility of drilling down to original records 
that have not been aggregated. 

11.4.2 Accounting for Varying Sample Size 

The number of days each scheduled trip is observed in a 
given date range can vary because of imperfect data recovery, 
especially if data collection uses a rotating instrumented sub-
fleet. Analyses should account for these varying sample sizes 
by aggregating in a way that gives every scheduled trip, not 
every observation, equal weight. 

For example, an easy but incorrect way to determine on-
time performance for a line over a date range is to query all 
the timepoint records that qualify, and simply get a total of 
the number with early, on-time, and late departures. How­
ever, if some trips were observed more than others, such an 
estimate will be biased in favor of the trips with higher sam­
pling rates. The proper estimation method would be, first, to 
get an average number of early, on-time, and late departures 
for each scheduled trip by aggregating over observed days 
and, then, to sum over all the scheduled trips that qualify. 

If the sample size is so small that some scheduled trips were 
not observed, an alternative aggregation scheme is to aggregate 
over observed days within short periods (e.g., 1-hour periods), 
then expand each period’s result according to the number of 
scheduled trips in that period, and aggregate over trips. 

11.4.3 Accounting for Missing Data 

Two approaches may be taken to deal with trips that were not 
observed on a given day. The classic approach is to omit them 
from the dataset and to give analysis algorithms appropriate 
methods to deal with missing data and account for the vary­
ing sampling rates that result, as discussed previously. 

An alternative approach is to place imputed values into the 
database whenever data is missing. Imputed values may be 
based on historical averages or on values from “similar” trips. 
That approach allows analysis algorithms to not have to deal 
with missing data or varying sampling rates. However, sup­
plying imputed values is a controversial practice that, to the 
researchers’ knowledge, has not been done with AVL-APC 
databases. 

11.5	 Data Structures for Analysis 
of Shared-Route Trunks 

Analyses in which stop sequence plays a role are generally 
called “profiles,” showing results along the route. Examples 
are load profiles, running time profiles, delay profiles, and 
profiles of schedule deviation and headway irregularity. Cre­
ating a profile requires an unambiguous stop sequence, gen­

erally provided in a stop list for each pattern (sometimes 
called “branch” or “variation”). A trip that deviates by even a 
single stop must be classified as a separate pattern. 

Profiles can readily be aggregated over scheduled trips fol­
lowing the same pattern. Aggregating this kind of report over 
completely different patterns is meaningless. However, a cer­
tain pattern that falls between “same” pattern and “completely 
different” pattern presents an analysis challenge. Many tran­
sit systems have route structures in which a line consists 
of multiple patterns (cases of up to 20 patterns have been 
observed) that share a common trunk. When several patterns 
share a common trunk, analysts might be interested in the 
load profile over the trunk, in an analysis of headways along 
the trunk, or in an analysis of running times or delays for all 
patterns along the trunk. 

In the survey of practice, the only shared-trunk analysis 
capability seen was for running time, in which running time 
was analyzed for all trips making a selected sequence of time-
points. Methods to analyze headways and load profiles on a 
trunk were either non-existent or ad hoc (i.e., applicable only 
to the particular trunk for which they were developed). 

As part of this project, a data structure for trunks was 
developed and tested in the TriTAPT environment. Users can 
define a “virtual route” consisting of a sequence of stops that 
may be shared, entirely or in part, by multiple route patterns. 
Users specify the patterns that contribute to the virtual route, 
specifying at which stop those patterns enter and leave the vir­
tual route. A pattern may enter and leave a virtual route more 
than once. That way patterns that deviate from a main route 
(e.g., to serve a school or senior housing development for a 
few trips each day) can be accommodated. Load, schedule 
adherence, headway irregularity, and delay profiles along the 
virtual route will then reflect all the trips on the trunk, includ­
ing patterns that branch off it or take detours. 

The virtual route pattern is stored as a permanent data 
structure, and any analysis that can be performed on a single 
route can be performed as well on the virtual route; in the lat­
ter case, all trips belonging to route patterns that contribute 
to the virtual route are queried for the analysis. Load profiles 
made for virtual routes have to account for passengers already 
on board when a trip enters the trunk. 

11.6	 Modularity and Standard 
Database Formats 

As mentioned earlier in this chapter, analysis software devel­
oped by a third party offers modularity and the possibility for 
analyzing AVL-APC data without developing one’s own soft­
ware. However, using third-party software requires using a 
standard data structure, which may in turn demand routines to 
convert data from its native format. That approach is working 
in practice for the transit agencies in Eindhoven and the Hague 
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that use TriTAPT and for transit agencies in both North Amer­
ica and Europe that use running time analysis tools provided 
by scheduling software vendors. 

As part of this project, the ability to interface archived AVL­
APC data from North American transit systems to the Tri-
TAPT data format was tested. Conversion routines were 
developed successfully for three U.S. transit agencies and one 
Canadian transit agency, all having different native data for­
mats. The Delft University of Technology has made TriTAPT 
conversion routines publicly available, allowing agencies to 
select one that starts with a database similar to theirs and 
modify the program as necessary. 

In principle, agencies should be able to use a third party’s 
analysis routine yet customize the reporting format. Besides 
cosmetic changes (e.g., inserting a logo), agencies might wish 
to make substantial changes in how results are formatted. 

This desire can be accommodated by having analysis rou­
tines export their results as simple tables, which agencies can 
then import and format as they wish, perhaps using report-
writing software. For example, all of TriTAPT’s analyses, in 
addition to generating a standard graphical report format, 
also generate a table containing all of the numeric results that 
can be readily exported to a database, spreadsheet, or other 
platform for formatting as the agency desires. 
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C H A P T E R  1 2  

Organizational Issues


Effectively capturing, archiving, and using AVL-APC data 
involves overcoming organizational as well as technological 
challenges. This chapter summarizes the chief challenges 
reported by the surveyed agencies. 

12.1	 Raising the Profile 
of Archived Data 

A reason that many AVL systems have failed to deliver their 
potential in terms of useful archived data is that those who 
specified and designed the systems either did not emphasize the 
importance of archived data or, more likely, did not recognize 
important differences between the needs of real-time data and 
those of archived data (38). Time and again, procurements 
have focused on real-time applications, with the implicit expec­
tation that archived data analysis would somehow happen. 
Some of the lack of appreciation of the character and value of 
archived data has been on the part of vendors whose primary 
product is real-time information; and some has been on the 
part of transit agency staff who managed procurements. There 
is a need for transit agency staff who are involved in system pro­
curement to better understand how system design affects what 
data is captured, what the data quality will be, and what off-line 
analyses it will be able to support. At the same time, there is a 
need for decision makers to appreciate the importance of 
archived data acquisition and analysis for improving system 
management and performance. 

Several studies have looked for quantifiable benefits of AVL 
systems to justify their cost. Where benefits have been quan­
tified, they most often come from an off-line application, 
namely, revising scheduled running times. This is ironic, con­
sidering that off-line analysis has often been an afterthought 
of such systems. 

12.2	 Management Practices 
to Support Data Quality 

Control and supervision has traditionally been concerned 
about performance, not about data collection. In fact, 

to the extent that buses are ordered to deviate from their 
schedules, operations control makes schedule matching 
more difficult. 

Fortunately, agencies are becoming more aware that col­
lecting and later analyzing data can also contribute to improv­
ing performance. There is an opportunity to improve data 
quality by changing control and supervision practices. Exam­
ples include detecting and correcting invalid sign-on data, 
informing the AVL-APC system of a revised schedule when a 
bus is deviated from its schedule, and standardizing codes for 
control messages. 

12.3	 Staffing and Skill Needs 

To date, transit agencies making good use of AVL-APC data 
have been able to do so only because of the strong set of staff 
skills they have been able to employ. The lack of available data 
analysis tools has meant that agencies have needed the skills to 
develop their own database and analysis tools. Only because of 
dedicated, qualified, and resourceful staff were Tri-Met and 
King County Metro able to make the great strides they did in 
improving the quality of their AVL-APC data and in develop­
ing tools to analyze it. 

In the future, with the development of third-party analysis 
software and increasingly relevant and accepted standards for 
data definitions and interfaces, the need for expertise in infor­
mation technology (IT) to develop archived AVL-APC data 
systems should decline. However, agencies will still need the 
staff and expertise to analyze the data. 

Managing data quality takes considerable staff effort. At 
agencies with good AVL and APC data, one or two staff mem­
bers are usually devoted to overseeing that the systems deliver 
the data they should. Identifying and correcting accuracy 
problems sometimes takes considerable IT expertise, espe­
cially if matching algorithms or data objects have to be changed. 
With AVL systems, matching, accuracy, and data capture 
issues are often just as much a problem for real-time applica­
tions as for archived data, so that little additional work is 
needed for archived data itself. 
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12.4	 Managing an Instrumented 
Sub-fleet 

Where APCs are used, common practice is to equip only 
10% to 15% of the fleet. The logistical issues of managing an 
equipped sub-fleet are significant. A program manager is 
needed to make assignments of instrumented buses and to 
check whether assignments were made. Garage supervisors 
must stage the instrumented buses properly, and transporta­
tion supervisors must ensure they are used where assigned. 
Data collection efforts that require all the buses operating on 
a route or along a trunk be instrumented at the same time 
(e.g., for a headway analysis) are particularly demanding; if a 
few instrumented buses miss their assignments, the data col­
lection effort will have to be repeated another day. Another 
layer of complication is added if so many instrumented buses 
are needed in one place that intergarage transfers are needed. 

Aging of the equipped sub-fleet also poses problems. At 
first, the instrumented buses are new, and there may be polit­
ical demands to assign the new buses in ways that conflict 
with a data collection program. As they age, restrictions on 
using them on certain routes or runs can develop. For exam­
ple, they may not have the ergonomic seats needed by some 
operators, or the low floor required on some routes. They may 
develop maintenance problems with wheelchair lifts or other 
bus systems. 

Partly to avoid the complications of shifting instrumented 
buses around, Tri-Met is well on its way to equipping its entire 
fleet with APCs. With 65% of the fleet instrumented with 
APCs (and the entire fleet instrumented with AVL), Tri-Met 
simply allows the APC-instrumented buses to collect data 
wherever they get assigned; that gives it an adequate sample 
size. When APCs can be integrated into a smart bus system 
that already includes AVL and schedule matching, the mar­
ginal cost of adding APCs drops dramatically. 

12.5	 Avoiding Labor Opposition 

Suspicion of “the spy in the cab” or “big brother” is natu­
ral. There is always the danger of sabotage if transit operators 
resent the way a system monitors them, especially if they 
believe that the system is unfair or inaccurate. 

For the most part, transit agencies that have adopted AVL 
and APCs have avoided incapacitating labor opposition. Gen­
erally, agencies have been successful at communicating the 
security benefits of AVL, which builds operator support. 
APCs generally do not engender opposition, perhaps because 
their name suggests they are only counting passengers. Some 
agencies intentionally avoid directly challenging an operator 
with AVL-APC data. However, some use the data to identify 
patterns of abuse or poor performance, alerting supervisors 
where and when problems are likely to occur. 
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C H A P T E R  1 3 


Conclusions


Archived AVL-APC indeed holds great potential for improv­
ing transit management and performance. This report has 
reviewed the history and state of the practice in AVL-APC data 
collection and analysis. System design affects in many ways the 
type and quality of data captured, which in turn affects the 
types of analyses that the data can support. To develop guid­
ance for system design, existing and potential analyses and tools 
that use AVL-APC data to improve management and per­
formance are reviewed and their data needs analyzed. Analy­
sis tools for running time, waiting time, and crowding were 
developed in the course of this project. 

AVL systems have traditionally been designed primarily for 
real-time applications. For investigating specific incidents, 
archives of almost any AVL data stream can be used in play­
back mode. However, for analysis of historical data combining 
multiple days of observations, data requirements substantially 
exceed what will suffice for real-time monitoring. The follow­
ing are the main conclusions regarding how AVL-APC systems 
should be designed to provide a valuable data archive: 

•	 Storing data on board frees the system from the capacity 
restrictions of transmitting data records over the air. 

•	 Time-at-location data (i.e., stop and timepoint records) is 
needed for analyses that aggregate over multiple days of 
observation, such as running time and schedule adherence 
analysis. Location-at-time (i.e., polling) data is not suitable. 

•	 Stop-level records permit running time analysis and sched­
ule making at greater geographic detail than timepoint 
records, better serving passenger information needs and 
supporting better operational control. 

•	 Integrating on-board devices adds information to the data 
stream that can be valuable in its own right as well as aid in 
matching captured data to the base map and schedule. The 
most valuable devices to integrate are door sensors, odome­
ter (transmission), and radio control head. 

•	 Designers should pay attention to a data collection and 
processing system’s ability to accurately determine arrival 

and departure times at stops, identify holding, and deal 
with multiple apparent stops and starts at bus stops and in 
terminal areas. Having data from both door sensors and 
odometers is particularly valuable in this respect. 

•	 Integrating AVL with the fare collection system offers a 
potentially powerful means of measuring ridership pat­
terns, because matching fare media serial numbers offers a 
means of observing linked trips. 

Automatic data collection can revolutionize schedule plan­
ning and operations quality monitoring as agencies shift from 
methods constrained by data scarcity to methods that take 
advantage of data abundance. The large sample sizes afforded 
by automatic data collection allow analyses that focus on 
extreme values, which matter for schedule planning (e.g., how 
much running time and recovery time are needed, what head­
way is needed to prevent overloads) and service quality mon­
itoring (e.g., how long must passengers budget for waiting, 
how often do they experience overcrowding). Stop-level data 
recording provides a basis for stop-level scheduling, a practice 
with potential for improved customer information and better 
operational control. With AVL-APC data, trends can be found 
that might otherwise be hidden, such as operator-specific ten­
dencies and sources of delay en route. Regularly analyzing AVL 
data gives a transit agency a tool for taking greater control of 
its running times by offering a means of detecting causes of 
delay and evaluating the effectiveness of countermeasures. 

Two sets of analysis tools were developed as part of this 
project. One uses running time data to suggest periods of 
homogeneous running times, analyze user-selected running 
time periods and scheduled running times, and create stop-
or timepoint-level schedules. It includes a valuable “what-if” 
tool that allows schedule planners to propose a scheduled 
running time period and running time, and immediately 
see how that running time would have performed based 
on the historical data. The tool offered for segment-level run­
ning times uses a statistical approach that, if combined with 
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operational control in the form of holding early trips, has 
great potential to improve on-time performance. These run­
ning time tools are part of the software package TriTAPT, 
developed at the Delft University of Technology, and are avail­
able with no license fee to U.S. and Canadian transit agencies 
through the end of 2009. 

New tools were also developed on a spreadsheet platform 
to evaluate waiting time and crowding from the customer’s 
perspective using AVL and APC data. Unlike traditional meth­
ods, they focus on the extreme events (e.g., very early and late 
buses, very long headways, very crowded buses) that most 
affect customer satisfaction. A whole new framework was 
developed for evaluating passenger waiting time, one that 
gives attention to the time that passengers have to budget for 
waiting, not just the time they actually spend waiting. Three 
new measures of waiting time are proposed: budgeted waiting 
time, potential waiting time, and equivalent waiting time, the 
latter being a comprehensive summary of passengers’ waiting 
cost. This framework is superior to traditional measures of 
waiting time because it accounts for the impact of service 
unreliability on passenger waiting time. 

The new crowding measures developed are defined from 
the passenger rather than vehicle perspective. With APC data, 
the percentage of passengers at the maximum load point who 
sit and who stand can be inferred, and they can be further 
divided into those who do and do not sit next to an unoccu­
pied seat, and those standing at various levels of crowding. 
The result is a distribution of passengers by crowding experi­
ence, something that should correlate well with passenger 
complaints and with service objectives. 

Routine use of automatic passenger counts poses a special 
challenge because imperfect counting accuracy requires trip-
level parsing and balancing both for consistency and to avoid 
drift errors. Accuracy measures are described and analyzed. 
The researchers show, both from empirical data and from log­
ical considerations, that accuracy in measured load (and, by 
extension, in passenger-miles) can be significantly worse than 
accuracy in on-off counts; therefore, load accuracy should be 
an important consideration in system specification, design, 
and testing. 

Shortcomings in several existing methods of load balancing 
are pointed out; some of them can bias load and passenger-
miles estimates upwards. A method of trip-level balancing is 

presented that prevents not only negative departing load, but 
also negative through load, a stronger feasibility criterion. 

Approaches and data structures are described for dealing 
with end-of-line passenger attribution, especially on routes 
ending in loops and on interlined routes in which passengers 
can be inherited from one trip to the next. On routes ending 
with short loops (short enough that it can be assumed that no 
passenger trips both begin and end in the loop), a parsing and 
balancing method was developed that makes the loop effec­
tively serve as a zero-load point. On routes lacking a natural 
zero-load point, such as downtown circulators or routes with 
loops on both ends, APC systems may need operator input to 
fix the load at a key point on each round trip. 

The typical fleet penetration rate (10% to 15%) for APCs 
is shown to be adequate for all passenger count applications 
except for monitoring extreme crowding. The sample sizes 
typically afforded by APCs are shown to be sufficient to sat­
isfy NTD requirements for passenger-miles reporting. Statisti­
cal requirements on systematic error in load or passenger-miles 
measurements to meet NTD reporting requirements are 
also given. 

Analysis procedures using AVL-APC data should account 
for variable sampling rates by aggregating and weighting 
observations based on the schedule. Simply aggregating over 
all the stop or timepoint records for a chosen route, period, 
and date range can bias results in favor of trips that were 
measured more frequently. 

While some analyses involve simple aggregation over a 
selected set of records, others require that analysis follow a 
particular sequence of stops. For such an analysis to involve 
data from multiple patterns operating on a common trunk, a 
special data structure is required to align the patterns. Such a 
data structure, called the “virtual route,” was developed in Tri-
TAPT; it permits analysts to see, for example, headway analy­
sis and passenger load profiles on trunks shared by multiple 
routes and patterns. 

The development of AVL-APC data collection and analysis 
capability poses numerous organization challenges. Perhaps 
the greatest is raising awareness within the organization of the 
value of archived AVL-APC data in order to ensure that AVL 
systems, which are often procured to serve real-time applica­
tions, have a design and the database support needed to 
achieve their potential for archived data analysis. 
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A P P E N D I X E S 


The following appendixes are published as part of TCRP Web 
Document 23 (available on the TRB web site: www. trb.org): 

•	 Appendix A: Tri-Met’s Experience with Automatic Pas­
senger Counter (APC) and Automatic Vehicle Location 
(AVL) Systems 

•	 Appendix B: New Jersey Transit’s Developing APC and 
Archived Data User Service 

•	 Appendix C: AVL- and APC-Related Data Systems at King 
County Metro 

•	 Appendix D: The Chicago Transit Authority’s Experience 
with Acquiring and Analyzing Automated Passenger and 
Operations Data 

•	 Appendix E: The Société de Transport de Montréal’s 
Experience with APC Data 

•	 Appendix F: OC Transpo: A Pioneer in APC Use for Service 
Improvement 

•	 Appendix G: Hermes-Eindhoven’s Experience with Auto­
matic Data Collection, Operations Control, Management 
Information, and Passenger Information Systems 

•	 Appendix H: The Transit Management Information System 
of HTM, The Hague 

•	 Appendix I: Metro Transit’s Integrated AVL-APC System 



Abbreviations and acronyms used without definitions in TRB publications: 

AASHO 	 American Association of State Highway Officials 
AASHTO 	 American Association of State Highway and Transportation Officials 
ACRP 	 Airport Cooperative Research Program 
ADA 	 Americans with Disabilities Act 
APTA 	 American Public Transportation Association 
ASCE 	 American Society of Civil Engineers 
ASME 	 American Society of Mechanical Engineers 
ASTM 	 American Society for Testing and Materials 
ATA 	 American Trucking Associations 
CTAA 	 Community Transportation Association of America 
CTBSSP 	 Commercial Truck and Bus Safety Synthesis Program 
DHS 	 Department of Homeland Security 
DOE 	 Department of Energy 
EPA 	 Environmental Protection Agency 
FAA 	 Federal Aviation Administration 
FHWA 	 Federal Highway Administration 
FMCSA 	 Federal Motor Carrier Safety Administration 
FRA 	 Federal Railroad Administration 
FTA 	Federal Transit Administration 
IEEE 	 Institute of Electrical and Electronics Engineers 
ISTEA 	 Intermodal Surface Transportation Efficiency Act of 1991 
ITE 	 Institute of Transportation Engineers 
NASA 	 National Aeronautics and Space Administration 
NCFRP 	 National Cooperative Freight Research Program 
NCHRP 	 National Cooperative Highway Research Program 
NHTSA 	 National Highway Traffic Safety Administration 
NTSB 	 National Transportation Safety Board 
SAE 	 Society of Automotive Engineers 
SAFETEA-LU 	 Safe, Accountable, Flexible, Efficient Transportation Equity Act: 

A Legacy for Users (2005) 
TCRP 	 Transit Cooperative Research Program 
TEA-21 	 Transportation Equity Act for the 21st Century (1998) 
TRB 	 Transportation Research Board 
TSA 	 Transportation Security Administration 
U.S.DOT 	 United States Department of Transportation 
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