Lceture 21: Operations and Security

- Role of AVL Technology in Improving Service Delivery
 - AVL Applications
 - Service and Operations Control
 - Real-time Control Strategies
 - Real-time Passenger Information Systems
 - Decision Tree for IT applications

Security

- General
- Terrorism

AVL Applications

- 1. Service and operations control
- 2. Passenger information
 - pre-trip
 - en route
 - automated stop announcements
- 3. Emergency response
- 4. Signal priority
- 5. Performance monitoring
- 6. Operations planning
- 7. Incident investigation
- 8. Automatic fare collection schemes

Service and Operations Control

Prior History

- significant trials in 1970s
- relying on central control
- generally disappointing results

Important Questions

- what level of "support" should be provided to the decision-maker?
- who should the decision-maker be:
 - the driver
 - the central controller
 - the field supervisor
- how early to intervene?
- what benefits are achievable?
- what is the value of additional information?

General Operations Control Problem

- Operating costs are fixed in short-run
- Provide best possible service quality
 - waiting time
 - riding time
 - transfers

- Holding: scheduled-based or headway-based
- Short-turning
- Expressing
- Deadheading
- Using reserve vehicle

<u>Holding</u>

Benefitted passengers:

boarding beyond holding point

Disbenefitted passengers:

those on board at holding point

Ideal scenario:

- midway along route
- few through passengers
- short preceding headway, long following headway

Short-turning

Benefitted passengers:

 reverse direction passengers boarding after shortturn point

Disbenefitted passengers:

- passengers travelling past short-turn point
- reverse direction passengers boarding before short-turn point

Ideal scenario:

- close to end of route
- few through passengers
- heavy reverse direction passenger flow
- long preceding headway, short following headway

<u>Expressing</u>

Benefitted passengers:

 those travelling beyond the express segment those boarding after the express segment

Disbenefitted passengers:

- those travelling to skipped segment
- those boarding in skipped segment

Ideal scenario:

- start and end express segment at major boarding points
- long preceding headway, short following headway

Deadheading

Similar to expressing but no passengers carried over express segment

Need to start deadhead at a terminal

Using Reserve Vehicles

Issues:

- how many vehicles to hold in reserve
- when to deploy them

Real-Time Passenger Information Systems

Objectives:

- to increase public transport ridership
- to improve satisfaction of current riders

Pre-trip information systems aim to influence:

- mode selection
- trip timing

En route systems aim to influence:

- customer satisfaction
- ease of use

Focus has been on "en route" systems with many European systems:

• London, etc.

Real-Time Passenger Information Systems

Findings to Date:

- forecasting bus arrival time is feasible
- passengers place value on the information
- ridership gains have been modest
- cost-effectiveness of AVL systems for this purpose alone is highly uncertain
- not a substitute for good static information

Other analysis (Hickman 1993) suggests:

 modest benefits from real-time information on transit path choice for realistic networks

Real-time information is only one element of higher public transport service quality: increasing ridership will require a much more comprehensive approach.

Decision Tree for Application of Information Technologies

OMC = Operations Monitoring and Control

PIS = Passenger Information Systems

Summary

Operation Control Findings

- typical impact of AVL on operations control has been small
- value of providing the vehicle operator more information
- defining role of "controller" as supporting the operator
- decision support systems not developed to date

Passenger Information Findings

- benefits are largely speculative in terms of ridership and revenue
- real-time systems not a substitute for good static information
- may be useful "add-on" to AVL system where service reliability is a chronic problem

Performance Monitoring, Operations Planning, and Operations Analysis

- increasingly important functions
- no real-time requirements
- low-cost technology

Conclusions

- **1.** Getting the drivers support is critical.
- 2. Full benefits from AVI/AVL/AVM systems require multiple uses of data.
- 3. A "systems level" view is required in designing these applications
- 4. Most of the critical questions raised are unanswered.

Transit Security

- Security is the freedom from intentional danger
- Safety is the freedom from danger
- The perceptions of security are a critical factor in discouraging transit use
- General security vs terrorism

Strategies for Improving Security

- Ordinances regulating quality of life crimes
- Concessions
- Management options
- CCTV

Ordinances Regulating Quality of Life Crimes

- Regulations against various offenses on transit property, e.g. disorderly conduct, drunkeness, etc.
- Agencies can then enforce these regulations to ensure customers do not feel the transit environment is out of control: zero tolerance policing

Concessions

- Concessions can be located in different areas:
 - directly outside the station area
 - in large intermodal stations as mixed-use development
 - within station but outside paid area
 - at platform area
- Station area concessions generally believed to deter crime by increasing level of activity
- Within station is more controversial -can contribute to violation of regulations (littering, eating and drinking on vehicles, etc.)

Management Options

- Who provides the security services: transit police, local police, security guards, non-security personnel
- Evolution from fare collector to station managers with AFC systems
- Good combination is:
 - security guards trained to maintain order, including issuing fines and tickets
 - work in partnership with local police, station staff, and maintenance workers
 - station agents should manage the station area, provide information and ensure maintenance
 - maintenance staff

Closed Circuit Television

- Widely used in transit to monitor station areas and deter offensive behavior
- CCTV installation can be + or in terms of perceptions

Terrorism

- Transit is by design an open infrastructure
- Depends on high volumes and rapid passenger flows onto vehicles, into stations
- Can be a critical element in responding to terrorism threats elsewhere
- Need to have well-established and visible plans and well-trained staff
 - to deter attacks
 - to minimize risks if an attack does occur

Key Agency Security Efforts

Transit Response

- Training employees
- Outreach to customers
- Sharing of best practices between transit agencies
- Increased visibility
- Increased staffing presence
- Vulnerability assessments
- Use of canine units
- Development/refinement of security & emergency preparedness plans
- Develop/strengthen inter-agency coordination
- Employee & contractor background checks
- Drills (field and table-top)

Key Agency Security Efforts

Capital Projects

- Upgrade of radio communications
- Automatic vehicle location (AVL)
- CCTV (facilities and vehicles)
- Access control (fencing, locks, smart cards)
- Intrusion detection
- Employee/ contractor ID
- Chemical agent detection
- Overall design to enhance security

Industry Challenges and Needs

Future Focus

- Sources of Direct Transit Funding for New Era Security Needs
- Ongoing Technical and Training Support
- Verifying Effectiveness of Security Technologies
- Low Cost "Real-Time" Chem/ Bio/ Radiological Detection
- Maintaining an Effective Public Transit ISAC
- Frequent/ Aggressive Communication to Industry
- Application of Threat Advisory Guidelines
- Inter-agency Emergency Coordination, Communications & Drills
- Security Sensitive Procurement Processes