1.264 Lecture 27

Security protocols Symmetric cryptography

Next class: Anderson chapter 10. Exercise due after class

Exercise: hotel keys

- What is the protocol?
- What attacks are possible?
 - Сору
 - Cut and paste
 - Replay
- What is the effect of encryption?

Solution: hotel keys

- Protocol:
 - C (card) -> D (door) : N1, N2, N3, N4, T
 - where N1 is the current code
 - N2, N3 and N4 are previous codes (if they can fit) and
 - T is the number of days the room is reserved
 - If N2 is correct, N1 is written to door unit, door opens
 - If N1 is correct and days<T, door opens
- Attacks:
 - Copied card can be used. No protection in this protocol.
 - Attacker can change value of T. Works unless another guest is given the room.
 - Replay is possible. Attacker can intercept card-door interaction, write it to new card, and enter room. Mag stripe readers emit radiation.
 - Encryption doesn't prevent copy or replay; it makes cut and paste harder
- Unexpected problem: unused rooms/keys

Basic key management example

- Alice and Bob wish to communicate
 - Sam is a trusted third party (shares keys with Alice and Bob)
 - A key is a secret number that both encrypts and decrypts
- Alice calls Sam, asks for key to talk with Bob
 - A -> S: A, B (A and B are principals or <u>names</u>)
- Sam sends Alice pair of certificates (ciphertexts)
 - Each contains copy of key
 - First is encrypted so only Alice can read it: K_{AS}
 - Second is encrypted so only Bob can read it: K_{BS}
 - S -> A: {A, B, K_{AB}, T}_{K_{AS}}, {A, B, K_{AB}, T}_{K_{BS}}
- Alice retrieves her key, sends Bob the second certificate
 - She then sends him a message that he can decrypt
 - A -> B: {A, B, K_{AB}, T}_{K_{BS}}, {M} _{K_{AB}}

(Can be replayed; no freshness)

(T is time)

Kerberos

- Two kinds of trusted servers:
 - Authentication server to which users log on
 - Ticket-granting server, which gives access to files and programs (authorization)
 - This is more scalable than a single server
 - Alice asks ticket server for access to Bob

• A -> S: A, B

 Server sends ticket, encrypted with A's password (key), granting access to B at time T for lifetime L of ticket

S -> A: {T_S, L, K_{AB}, B, {T_S, L, K_{AB}, A}_{K_{BS}}}_{K_{AS}}

Alice sends timestamp to resource B, which confirms it's alive

A -> B: {T_S, L, K_{AB}, A}_{KBS}, {A, T_A}_{KAB}

Bob sends timestamp incremented by one

• B -> A: {T_A+1}_{K_{AB}}

Kerberos, cont

- This avoids replay attacks and compromised keys by using timestamps
 - Compromised keys are a problem only for their lifetime
 L, typically measured in hours
 - However, clocks must now be synchronized
- Kerberos is used for Microsoft security and many single login systems
 - Why don't we use Kerberos for Internet and Web security?
 - Kerberos requires a central key server trusted by all parties
 - If it is broken, all communications are exposed
 - If it is down, no one can initiate secure connections
 - Who would such a trusted party be on the Internet?
 - It would be expensive
 - We use a different protocol, SSL (next lectures)

Passwords as a protocol: issues

- The simplest security protocol is a username and password
 - Often the most vulnerable piece of security
 - Often used to protect other security measures
 - Your browser SSL certificate is protected by a password
 - Kerberos/Microsoft security key is your password
- User issues
 - Social engineering
 - Users disclose passwords to third parties
 - By accident, on purpose, or through deception
 - Deception common in health care, insurance, banking
 - Reliable password entry
 - Users mistype passwords; password resets
 - Remembering passwords
 - Users write down passwords, choose weak passwords

Passwords: solutions

- There are 26 letters, 10 digits: 36 possible characters at each location in a password
 - This should be about 5 bits ($2^5 = 32$ combinations)
 - Because of patterns, it's usually only 1.5-2 bits/char
- An 8 character password is less than a 16 bit key
 - Easily broken (see the book for many attacks)
- Solutions
 - Passphrases
 - Hardware password generators
 - Biometrics (which can also be attacked)

Cryptographic primitives

Symmetric key encryption

Used to encrypt sessions

Asymmetric (public) key encryption

- Used to distribute symmetric keys
- Basis for digital signatures
- Stream or block ciphers
 - Used to apply key to message
- Message digests (hashes)
 - Used to verify message integrity
- Digital signatures (certificates)
 - Used to verify identity of principals
 - Covered as part of Secure Sockets Layer (SSL)

Cryptography issues

- Cryptography protects against eavesdropping, tampering (cut and paste)
- It does not protect against replay (need freshness for that) or necessarily against man-in-the-middle attacks
- Nothing protects against denial of service attacks except shutting down the attacker

Managing network risks: Cryptography

Definitions

- Plaintext: original message
- Ciphertext: encrypted message
- Cryptographic algorithm: function converting plaintext to ciphertext
- Key: number used by algorithm to encrypt and/or decrypt
 - Not the same as a database key (primary or foreign!)
- Encryption process

- Symmetric: sender and receiver use same secret key
- Asymmetric: sender and receiver use different, but related keys.
 Receiver key public, used by all senders to that receiver

Symmetric encryption

- Symmetric algorithms use same key to encrypt and decrypt
 - DES (Data Encryption Standard): 56 bit key
 - Splits data into pieces, reshuffles
 - Cracked in 1998 after 30 years of use: faster hardware
 - Triple DES: encrypt/decrypt/encrypt with 3 DES keys: 168 bit effective key length
 - Backward compatible with DES in banking, etc.
 - RC2, RC4, RC5: 40-2048 bit keys, in common use by encrypting Web servers and browsers
 - AES: Current US government standard, uses Rijndael algorithm
- Problems with symmetric keys
 - Must be exchanged in advance, via secure method
 - Multi-way communication not supported effectively:
 - If many users must communicate with server, compromising any one can compromise all

Exercise (very simplified from real thing!)

- Plaintext: 73628495
- Key: 31
 - k1= 3, k2= 1
- Sender algorithm:
 - Shift digits by k1 to the left. (Wrap around as needed.)
 - Subtract k2 from each digit
- Ciphertext:
- Receiver algorithm:
 - Add k2 to each digit
 - Shift digits by k1 to the right. (Wrap around as needed.)
- Plaintext:

(Real symmetric algorithms chop, shift, add/subtract in complex patterns to remove statistical patterns in data—see text: S-boxes)

Solution

- Plaintext: 73628495
- Key: 31
 - k1= 3, k2= 1
- Sender algorithm:
 - Shift digits by k1 to the left
 - Subtract k2 from each digit
- Ciphertext: 28495736 -> 17384625
- Receiver algorithm:
 - Add k2 to each digit
 - Shift digits by k1 to the right
- Plaintext: 62517384 -> 73628495

(Real symmetric algorithms chop, shift, add/subtract in complex patterns to remove statistical patterns in data---see text: S-boxes)

An example of a 16-bit SP-network (substitution-permutation network) block cipher.

Image by MIT OpenCourseWare.

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.