1.264 Lecture 27

Security protocols Symmetric cryptography

Next class: Anderson chapter 10. Exercise due after class

Exercise: hotel keys

- What is the protocol?
- What attacks are possible?
- Copy
- Cut and paste
- Replay
- What is the effect of encryption?

Solution: hotel keys

- Protocol:
- C (card) -> D (door) : N1, N2, N3, N4, T
- where N 1 is the current code
- N2, N3 and N4 are previous codes (if they can fit) and
- T is the number of days the room is reserved
- If N2 is correct, N1 is written to door unit, door opens
- If N1 is correct and days<T, door opens
- Attacks:
- Copied card can be used. No protection in this protocol.
- Attacker can change value of T. Works unless another guest is given the room.
- Replay is possible. Attacker can intercept card-door interaction, write it to new card, and enter room. Mag stripe readers emit radiation.
- Encryption doesn't prevent copy or replay; it makes cut and paste harder
- Unexpected problem: unused rooms/keys

Basic key management example

- Alice and Bob wish to communicate
- Sam is a trusted third party (shares keys with Alice and Bob)
- A key is a secret number that both encrypts and decrypts
- Alice calls Sam, asks for key to talk with Bob
- A > S: A, B (A and B are principals or names)
- Sam sends Alice pair of certificates (ciphertexts)
- Each contains copy of key
- First is encrypted so only Alice can read it: $\mathrm{K}_{\text {AS }}$
- Second is encrypted so only Bob can read it: $K_{B S}$
$-S->A:\left\{A, B, K_{A B}, T\right\}_{K_{A S}},\left\{A, B, K_{A B}, T\right\}_{K_{B S}}$
(T is time)
- Alice retrieves her key, sends Bob the second certificate
- She then sends him a message that he can decrypt
- $A \rightarrow B:\left\{A, B, K_{A B}, T\right\}_{K_{B S}},\{M\}_{K_{A B}}$
(Can be replayed; no freshness)

Kerberos

- Two kinds of trusted servers:
- Authentication server to which users log on
- Ticket-granting server, which gives access to files and programs (authorization)
- This is more scalable than a single server
- Alice asks ticket server for access to Bob
- A -> S: A, B
- Server sends ticket, encrypted with A's password (key), granting access to B at time T for lifetime L of ticket
- $S \rightarrow A:\left\{T_{S}, L, K_{A B}, B,\left\{T_{S}, L, K_{A B}, A\right\}_{K_{B S}}\right\}_{K_{A S}}$
- Alice sends timestamp to resource B, which confirms it's alive
- $A \rightarrow B:\left\{T_{S}, L, K_{A B}, A\right\}_{K_{B S}},\left\{A, T_{A}\right\}_{K_{A B}}$
- Bob sends timestamp incremented by one
- $B \rightarrow A:\left\{T_{A}+1\right\}_{K_{A B}}$

Kerberos, cont

- This avoids replay attacks and compromised keys by using timestamps
- Compromised keys are a problem only for their lifetime L, typically measured in hours
- However, clocks must now be synchronized
- Kerberos is used for Microsoft security and many single login systems
- Why don't we use Kerberos for Internet and Web security?
- Kerberos requires a central key server trusted by all parties
- If it is broken, all communications are exposed
- If it is down, no one can initiate secure connections
- Who would such a trusted party be on the Internet?
- It would be expensive
- We use a different protocol, SSL (next lectures)

Passwords as a protocol: issues

- The simplest security protocol is a username and password
- Often the most vulnerable piece of security
- Often used to protect other security measures
- Your browser SSL certificate is protected by a password
- Kerberos/Microsoft security key is your password
- User issues
- Social engineering
- Users disclose passwords to third parties
- By accident, on purpose, or through deception
- Deception common in health care, insurance, banking
- Reliable password entry
- Users mistype passwords; password resets
- Remembering passwords
- Users write down passwords, choose weak passwords

Passwords: solutions

- There are $\mathbf{2 6}$ letters, 10 digits: $\mathbf{3 6}$ possible characters at each location in a password
- This should be about 5 bits ($2^{5}=32$ combinations)
- Because of patterns, it's usually only 1.5-2 bits/char
- An 8 character password is less than a 16 bit key
- Easily broken (see the book for many attacks)
- Solutions
- Passphrases
- Hardware password generators
- Biometrics (which can also be attacked)

Cryptographic primitives

- Symmetric key encryption
- Used to encrypt sessions
- Asymmetric (public) key encryption
- Used to distribute symmetric keys
- Basis for digital signatures
- Stream or block ciphers
- Used to apply key to message
- Message digests (hashes)
- Used to verify message integrity
- Digital signatures (certificates)
- Used to verify identity of principals
- Covered as part of Secure Sockets Layer (SSL)

Cryptography issues

- Cryptography protects against eavesdropping, tampering (cut and paste)
- It does not protect against replay (need freshness for that) or necessarily against man-in-the-middle attacks
- Nothing protects against denial of service attacks except shutting down the attacker

Managing network risks: Cryptography

- Definitions
- Plaintext: original message
- Ciphertext: encrypted message
- Cryptographic algorithm: function converting plaintext to ciphertext
- Key: number used by algorithm to encrypt and/or decrypt
- Not the same as a database key (primary or foreign!)
- Encryption process

- Symmetric: sender and receiver use same secret key
- Asymmetric: sender and receiver use different, but related keys. Receiver key public, used by all senders to that receiver

Symmetric encryption

- Symmetric algorithms use same key to encrypt and decrypt
- DES (Data Encryption Standard): 56 bit key
- Splits data into pieces, reshuffles
- Cracked in 1998 after 30 years of use: faster hardware
- Triple DES: encrypt/decrypt/encrypt with 3 DES keys: 168 bit effective key length
- Backward compatible with DES in banking, etc.
- RC2, RC4, RC5: 40-2048 bit keys, in common use by encrypting Web servers and browsers
- AES: Current US government standard, uses Rijndael algorithm
- Problems with symmetric keys
- Must be exchanged in advance, via secure method
- Multi-way communication not supported effectively:
- If many users must communicate with server, compromising any one can compromise all

Exercise (very simplified from real thing!)

- Plaintext: 73628495
- Key: 31
- k1= 3, k2=1
- Sender algorithm:
- Shift digits by k1 to the left. (Wrap around as needed.)
- Subtract k2 from each digit
- Ciphertext: \qquad
- Receiver algorithm:
- Add k2 to each digit
- Shift digits by $\mathbf{k 1}$ to the right. (Wrap around as needed.)
- Plaintext:
(Real symmetric algorithms chop, shift, add/subtract in complex patterns to remove statistical patterns in data-see text: S-boxes)

Solution

- Plaintext: 73628495
- Key: 31
- k1= 3, k2=1
- Sender algorithm:
- Shift digits by k1 to the left
- Subtract k2 from each digit
- Ciphertext: 28495736 -> 17384625
- Receiver algorithm:
- Add k2 to each digit
- Shift digits by k1 to the right
- Plaintext: 62517384 -> 73628495
(Real symmetric algorithms chop, shift, add/subtract in complex patterns to remove statistical patterns in data---see text: S-boxes)

S Boxes

An example of a 16-bit SP-network (substitution-permutation network) block cipher.
Image by MIT OpenCourseWare.

Also see AES Wiki entry

MIT OpenCourseWare
http://ocw.mit.edu
1.264J / ESD.264J Database, Internet, and Systems Integration Technologies Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

