Consolidation Part II PL 1.322 CCL 3/98 3/4/99 THE RATE OF CONSOLIDATION AND COEF. OF PERMEABILITY (Hydroulic Conductivity) Page No 1. Introduction 1.1 Consolidation Theories (Sheets A1,2) · Terzaghi 1-D · Vertical chains · Combened No. 5505 Engineer's Computation Pad 1.2. Measurement of Cu = ku/mu. tw · Incremental sed. · CRSC . DM-7 C. ne (Shed B) 2. Effects of Stress History and Disturbance 2 2.1 General Trends 3 2,2 Variation in Cy (NC) 3. Effacts of LIR : NC Ouclometer Data 4 3.1 Some general Trinds (to - I day fests) 3.2 Method to Pridit Type III Cum 3,3 Effect of Prin Secondary Compression on Computed C, (NC) 4. Coefficient of Permeability (Hydr. Conductivity) 4.1 Background 4.2 Experimental Procedures, Comparisins and Q vs log k Data (Shedo C1-3, D1,2) 4.3 Some Observations (Sheets C2 \$ 02) ъ 5. Non-Linear 1-D Consolidation Analyses 5.1 Settlement of gloucester Fill on Canadian Quick Clay (Shut E) 9 . Mesri (1981) Illicon analyses · Background 5.2 Finite Element Analyses of 1-D Consolidation Using 10 MCC model · Objections · Desured MCC modeling . Problems in application.

Consolidation Part III CCL 3/98 1.322 Page No. 6. Backanalysis of Field Consolidation Data 6.1 Back ground (For 1-D Tuzzaghi type proflems) 12 · Objectives · Problems · Definition 6.2 Conventional method (Turgagli theory) No. 5505 Engineer's Computation Pad . Incremental time method 6.3 asaoka (1978) and Orleach (1983) Methods (Terzashi theng) 15 · Mithod - Co hom & data · method - Co hom is data 6.4 Analysis of Settlement & Prezomiter Data for Vertical Drame 14 · Edata · u data 7. Miscellaneous 7.1 Effect of Temperature 15 7.2. Consolidation of Layered System 15 Sheets AI, 2 Equations for Tergaghi and Vertical Prain Consolidation Shut B DM-7 CV nWL. Shuts C1, 2, 3 Permetility data from Tavenas et al. (1983) Shuts DI, 2 " Mesri, et al. (1994) 11 Mesni (1931) Illicon FD analysis of gloureston Fill Shut E

Consolidation III Ca 3/1/98 1.322 1. INTRODUCTION 1.1 Consolidation Theories 1) Terzaghi 1-0 (Sheet Al) 2) Vertical Drains (Short A2) → Th= cht/de* ٥ 20 No. 5505 Engineer's Computation Pad Ū, 40 $n = \frac{de}{dw}$ 60 Ūh 80 log Ty= cut/Hd2 90 Core (from Setwild, Instell, Int II) 3) Combined Verticial & Horizon the Flow 1 $(1-\bar{U}) = (1-\bar{U}_{v})(1-\bar{U}_{h})$ de. 1 + F / 0 ~ W ~ O For all three U= Pc /Pct - for constant my 1.2. Maasurement of cy = ky/my. Nw 1) Incremental Oedometer VE - Tgo = 0.849 (Taylor) Hd = ave. In increment $C_V = \frac{T H_d^2}{T}$ 63 logt T50 = 0, 197 (Casagrande) Plat in are. The · Typually for to= I day, Cu(17)= (2 ± 1) Cu(10 t) E= wxEpjEp= (See Section 3 possible , syplanation) σv 2.) CRSC (also see Section 8,3, Const. Pant II) · 26/0, ~ 5-15%, desviable Ha $\frac{\pounds}{2}\frac{Hd^2}{Mb} \rightarrow \frac{Hd^2}{2}\left(\frac{d\sigma_2}{dt}\right)$ AMANI 46= Heat :-· Cy = Ky my · Yy 2=1.0. Linear theory assumer paraboli He distribution - $\sigma_{v} = \sigma_{v} - \frac{2}{3}u_{b}$. ?! . Much lover * Discussion of . Much higher effects inthe 26/0

CCL 3/1/98 1.322 Consol. III Þ2 3) DM-7 Correlation with Liquid Limit (Sheet B) Cv(NC) = 10-50 ×10-4 cm²/se for CL fnct ~ 1-10 Note: CCL finds that measured (, (NC) data is typically scattered No. 5505 Engineer's Computation Pad about the mean frend line 2. EFFECTS OF STRESS HISTORY AND DISTURBANCE 2.1 General Trends (Real deta: p2a) Deta for no distubance 00 ¢, 1) Why is c, (OC) >> C, (NC)? 1 1 2) What predict for (unloading)? logove & logk, C, 3) Permeability Index, Ck (also see Sect. 41) Ck-de/digk log The (1-2)/(4 : Ky = Kvo (10) 4) What predict for distubed sample? - (+ why run tests of U/R cycle)

	(CL 3/1/98 1.322	Consel. III	p3
	5/4/14		
	2.2 Variation in	$c_v(Nc)$	
	1) Mesni §	Rokhan (1974) ASCE, JGED 100(8)	
	· Go k	$= \frac{k_{\nu}(1+c_{\nu})}{k_{\nu}} \qquad $	(k ; Q-Q=-G, 100 0/05
ס	my, V.	avidu Rio	ic log o'lo' - Gello
on Pa	av = de/d	$T_{\rm re} = \frac{0.434}{\pi} \frac{C_{\rm c}}{2}$ = (10)	= (7/00)
outatic		$a_{v} \rightarrow k_{v^2}$	Ryo
Comp	: C12 Ko (1)	+ (0) Tr'	tto) (c) ck
505 eer's	0.434 %	Cr (J') Cr/Cr	a) ml
No. 5(Engin		$\left(\overline{\sigma_{vo}} \right) = \frac{R_{o}(1+1)}{2}$	$\frac{C_{\rm control}}{C_{\rm control}} = \frac{1}{2} \frac{C_{\rm control}}{C_{\rm control}} = 1$
 		-1) 1- Cc/c 0 1	
Ę	• C _v (NC) ~ ($a_{\nu} = \sum_{k=1}^{n} \sum_{k=1}^$	NC) dua, wy martik
·		" \(\-	
	2) Some Lab	2 (based on blacking at some schools, a.g	Dunean 1993 ASCE, JGE 119(9)
)	Compute d	cr using the methil Hd at start of fear	н. p/347-/350)
)	Compute of This pro-	cr using the <u>methil</u> Hy at start of fear duces large increase in Cr (NC) m	th micreasing Tre/ Tp.
}	Compute of This pro- ('Katoria	cr using the <u>methil</u> Hd at start of teas duces large increase in Cr (NC) m le for using initial Hd =	+ micreasing σ ¹ /σ ¹ /
1	Compute of This prov ('Katorial 3) CCI expe	cy using the <u>initial</u> Hd at start of teas duces large increase in Cy (NC) m le for using initial Hd =	the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$
)	Compute o This prov ('Katronia 3) CCL expe may get	cr using the <u>mithil</u> Hd at start of tead duces harge increase in Cr (NC) m le for using initial Hd = nume is that Cr (NC) remains a con min. value with bound of for	the increasing $\sigma_{ve}^{\prime}/\sigma_{p}^{\prime}$.) when the althory of the second secon
1	Compute o This prov (Katoria 3) CCL expe may get . See D	cr using the <u>initial</u> Hd at start of tead duces large increase in (r (NC) m le for using initial Hd = nume is that (r (NC) remains a con min. value just beyond of for. 3a for date on 2 class deposition	the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.) when the althory of the second secon
)	Compute o This prov (Katorial 3) CCL expe may get . Sec p	cr using the <u>initial</u> Hd at start of test duces large increase in (r (NC) m le for using initial Hd = nume is that (r (NC) remains a con min. value just beyond of for 3a for data on 2 day deposits - (the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$. where the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.) where the althory of the second
)	Compute o This prov (Katorial 3) CCL expe may get . Sec po	cy using the <u>method</u> Hd at start of test duces large increase in (v (NC) m le for using initial Hd = nume is that (v (NC) remains a con min. value just beyond of for 3a for data on 2 day deposits -> (the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.) what, altho $c \approx Ck$
)	Compute o This prov (Katorial 3) CCL expe may get . See p 3	cr using the <u>initial</u> Hd at start of test duces large increase in Cr (NC) m le for using initial Hd = nume is that Cr (NC) remains a con min. value just beyond Op for 3a for data on 2 day deposits - 1	the micreasing σ'_{vc}/σ_{p} .) what, altho cs-shaped VCL $C_c \approx C_k$
1	Compute o This prov (Katorial 3) CCL expe may get . See p	cr using the <u>method</u> Hd at start of test duces large increase in (r (NC) m le for using initial Hd = nume is that (r (NC) remains a con min. value just beyond of for 3a for data on 2 day deposits - (the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$. where the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.) where the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.
)	Compute o This prov (Katorial 3) CCL expe may get . Sec p :	cr using the <u>method</u> Hd at start of test duces large increase in (r (NC) m le for using initial Hd = nume is that (r (NC) remains a con min. value just beyond Op for 3a for data on 2 day deposits - (the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.) whet, altho xS-shaped VCL $C_c \approx C_k$
)	Compute o This prov (Katorial 3) CCL expe may get . Sec p 3	cy using the <u>method</u> Hy at start of test duces large increase in (v (NC) m le for using initial Hd = nume is that (v (NC) remains a con min. value just beyond of for 3a for data on 2 day deposits -> (the increasing $\sigma_{vc}^{\prime}/\sigma_{p}^{\prime}$.) what, altho cs-shaped VCL $C_c \approx C_k$
)	Compute o This prov (Katorial 3) CCL expe may get . Sec p	cr using the <u>method</u> Hd at start of test duces large increase in (r (NC) m le for using initial Hd = nume is that (r (NC) remains a con min. value just beyond of for 3a for data on 2 day deposits - (the increasing $\sigma_{ve}^{\prime}/\sigma_{p}^{\prime}$.) we look, altho $c^{c} = Ck$

, .| .

CU 3/1/98	1.322	Consol III	
3.2	Method to Pi	redict Type III Curves (1	Mesri & Godlewski 1977 ASCE JGED
, , ,) From Terg	aghi Theory	GI S)
<i>Ū</i> ,= <i>Ū</i>		Mar slope du/dlog Tv =	0.66 (see shut A1)
		Ū= Ec,	Ect
	109 2) Fn Co	Tip restant my \$ Cv (means n	w prin secondary)
-	May slope premary	during (de/logt)may = C	66 Ect = 0.66 CR log (Typ / Tyi)
		= 0.66 CR log (1+	$\frac{DT_{y}}{T_{yi}} = 0.66 CR \log (1 + LIR)$
	3) Nerve $R_{p^2} (d\epsilon)$	(1) allogt) may = 0.66 log (1+1	$LIR) = 0.20 \text{ fn } LIR \cdot 1$
· · · · · · · · · · · · · · · · · · ·		C.R.	$= 0.05^2 + = 0.2$ = 0.027 + = 0.1
	4) What is	is typical rate of seconda	ry compression (Consol Part II)
	$K_{s} = (\frac{as}{as})$	$\frac{\left[d \log L \right]}{CR} = \frac{CR}{CR} = 0.045$	t 0.015 fn CL-CH days
	5) Therefre	Anw LIR→ Kp ≤ Ks 11	lence no break in cure!
6)) What hap • Seconda	pens if te > tp as centa	inly occurs with to = 24h?
	· therefore .	should use redefined LI	$R = (\sigma_{v+}' - \sigma_p) / \sigma_p'$
	where a	Tp = Tvi (te/tp) Cu/CR since	Ect + CR 100 Julio
	Note: In te/ LIR=as.	Ep=100 { Cx/CR = 0.045, Op/ 15 15min. → LIR' = 0.22 '→ Rp= 0.057	ovi = OCR = 1.23
	- 43:	s =0.057 = 0.016	

No. 5505 Engineer's Computation Pad

,

CCL 3/1/98 Consol III 1.322 3.3 Effect of Phin Sundary Compression on Computed Cy(NC): LIR = 1 1) Conceptual have work VCL(EOP) Loading path & behavin J Tvr a-b relading to VCL No. 5505 Engineer's Computation Pad tc= Iday Whigh Cr (a) σ'_{v_f} be virgin consolidation Mlow Cv (NC) Cd Secondary compression 17 The Cv 4) Why do many engr. select Cr (VE) on are of VE Slogt methods? . Because they believe that fuld Nates of consolidation generally must faster then prederid from C. (AK) In Tyc However, most clays have includ OCR >1 2) CCL predicted deal reading as VE (needs verification !) top curred due to high ((OC) true Cu(NC) behavior is flatter d fitted line How wind data -> slope to steep -> tgo too small a cut to large ⇒√₹ 3) Compared to logt fitting method where defendin of tp (tim) should be less affected by inchil oc behavior and hence is lower and more realisti CV(NC)

Conorlia III CCL 3/1.3/99 1,322 3/4/99 4. COEFFICIENT OF PERMEABILITY (HYR. CONDUCTIVITY) 4.1 Background (for soft, natural clars) 1) Objective is to Obtain & no log k Relationship 4,4 Ck= da/dlogk = (20-2)/logk/k G : k = ko(10) ((-C)/Ck > logk 2) Uses in Practice is Compute Cy when small LIR -> fitting methods not applicable. " Consolidation analyses with generalized Soil model (e.g. MEC or MIT-ES) · Scepage analyses 4.2. Experimental Procedures ; Comparisons & R- lizk Data 1) Experimental procedure $\sqrt{\epsilon}$ logt a) Bachcal from old. -> Ry = Cr. mr. dy = My dw (O.85 Hd² or O.2 Hd²) b) CRSC -> direct measurement, ky = EHd2Y ~ c) Falling head on constant head in e.g. Su. Fig. 8 Sheet Cl. · Oldometer cell · Treased cul

Vo. 5505 Engineer's Computation Pad

Ca 3	13/98	1.322	
			-

No. 5505 Engineer's Computation Pad

Consoled III

08

1.2 Cont. 2) Comparison Sheed CI Fig. 16 R. (TH) = K. (OED) as expected Fig. 18 R. (OD) > k, from ((logt) in small LIR R. (042) - R. (CRSC) Sheet DI Fig. 6 Ry (red) > Ry from cu (11gt) by = X2 Fig. 7

- 3) 2-log k Data Sheet C3 Fig. 233 (from CRSC): Simen 2-log k for E, 208 Sheet D1 Fig. 8 (monthy CRSC?): data on several class over wide range of 2
- 4.3 <u>Some Observations</u> 1) Values of kyo Canadian Clays (mostly) Sheet C2, Fig. 12 Jenerally kyo = 1×10⁻⁷ cm/s (1×10⁻⁹ m/s) Sheet D2, Fig. 12 mth range 0.5 - 50 × 10⁻⁷ cm/s.

- 3) Permeability anisotropy, the kh/k, Shuts C2 3D2 + much less Marine clayer the 1-1.5 · Laustine clayer the <5 and usually <3
 - . Northeastern varved change The = 10±5 (Consol. II ; MIT data)

1) Empiried correlation to predict Roos : Sheet DZ, Fig.10. Roo on Co/CF as f(Actuity = Ip/CF); CF= 1.-Zu

$$C_{L} = \frac{1}{3} \frac{1}$$

Adapted from 5-M Lee doctoral thesis , 1995.

plla

<u>CCL 3/14/96</u> 3/3/98 Consolidation TI 1.322 6. BACKANALYSIS OF FIELD CONSOLIDATION DATA 6.1 Background (See Section 6.4 for analysis of data with Vertical Draints) 1) Objective is to back calculate values of C. (P) from fulid & date and/on values of (v(2) from pregometic data theory Tergaghi theory 2) However, field conditions never waety meet Tergaghi's assumption, Q.G. · Lord not exactly 1-D - finite fi and 20 \$ Doy 22-14 22-14 22-14 · My + constant · Cy + constant 3) Hence backanelyses are not that easy 4) Defenctions : ft - measured total settlement fi = estimated initial " Pc = Pt - Pi = consoledation settlement Pct = estimated finil courseledation settlement il = measured pore pressure = (h-he)/tw Hs = l'quiletrum " = 4-43 h= ANE He = excess No = initial wars " >t 6.2 Conventional Mathod "use " incremental " time to avoid 1) Basic egn (v = Tv Hd2 = ATv Hd2 Moblem of defining t=0 2) For ρ dita, get $T_{V2} f(t)$ from $\overline{U} = \frac{f_c}{f_{ct}} = \frac{f_t - h'_c}{\rho_{ct}} \rightarrow$ problems in estimating both fi and fit 3) For U data, get Tr = f(t) from Uz = 1 - Ue at corresponding Z= 3/Hd -> problems in estimating to and maybe the and Z Keef-te U. = felfet 1 67./0t TV 0.05 0.10/120 × Ha2 → Cy (+) 0.44 0.15 200

Consolidation III CCL 3/ 14/96 1.322 3/3/99 6.3 Asaoka (1978), Orleach (1983) Methods 1 Sata | Folno 18(4), 87-161 t MIT SM thisis 1) For Tv > 0.15-0.2 , Tergaghi full solution simplies to: t (U,> 452-501) $E_{g,A} \quad U_{V} = \frac{f_{c}}{f_{c}t} = 1 - \frac{B}{\pi^{2}} e^{-\frac{\pi^{2} c_{v} t}{4 H d^{2}}} \rightarrow c_{v}(P)$ Eq. B $U_3 = 1 - \frac{H_c}{H_0} = 1 - \frac{4}{T} \sin \frac{\pi^2 C_0 t}{2} e^{-\frac{\pi^2 C_0 t}{4H_0^2}}$ នខ្លួ 22-141 22-142 22-144 2) To apply Eq. A, obtain values of It at equal Dt inturals and plot fen a fen-1, where fen = value at timet " tatat f fen-1 = +1 < fr = final settlement · ftn = a+ bftn-1 -len $\frac{1}{\pi}C_{v}(\rho)=-\frac{4}{\pi^{2}}\frac{h}{h}\frac{b}{h}$ $#f_{f} = f_{c} + f_{i} = \frac{a}{(1-b)}$ Note: Use LR - intercept a and ltn-1 Slope b Comments (For constant load, my and Hd) 1) approach is very attractive service it climinates problems of having to estimate fi and fet and also predicts final settlement at EOP 2) However, if applied to & data that encludes Tv < 0.15, (ic, U<45%), this approach: · greatly overestimates Cv(?) Not appreciated From MIT in practice ! underestimates ff visiarch on TPS even thrugh the LR r 2 x 1.0 projut († HP #4)

CCL 3/14/96 Consolidation II Ø14 1.322 3/2/97 3/3/98 3) To apply Eq. B, plat log 4e ast for lack pigmeter $\frac{1}{2} C_{v}(u) = \frac{4 H d^{2}}{H^{2}} \frac{ln(u_{e_{1}}/u_{e_{2}})}{(t_{2}-t_{1})}$ independent of Z = 3/Hd ! NOTE: At T. L O. 15, get obvious curature in plat of log te not SHEETS SHEETS SHEETS SHEETS For constant load, 45 \$ CV 2022 2«1 logue 22-141 22-142 22-144 _ Z</ →t (Contraction) 6.4 Analysis of Settlement & Plazometer Data for Vertical Drains (Note: For no vertical drainage, constant of, us, ch, etc) From Sheet A2 equations, asasha & Osleach methods reduce to: 1) Settlement data (again from P1, P2, P3 et. at equal Ot) · ftn= c+d.ftn-1 ftn * Ch(P) = - de2 Fn Ind 7 * $f_f = f_i + f_{cf} = \frac{c}{(i-d)}$ C > ftn-1 2) Pregometer data (Independent of T/Tw) Need & between channe $* C_{h}(u) = \frac{de^{2} F_{h}}{2} \frac{l_{h}(u)(u_{a})}{A^{+}}$ In Ha Closen to drawn

CCL 3/3/98 Consol. II 1.322 7, MISCELLANEOUS 7.1 Effect of Temperature · From 1.361 Part II-3 , R= (2) (K= physical promeability 2 permeant &= unit weight M = Niscosity No. 5505 Engineer's Computation Pad From Lambe (1951) poise - dyne sic/cmª M20/XT T(9) re (millipoise) 17.94 0.56-0. 5 15.2 0.664 10 13.1 0.77 RT = R200 120 15 11.45 0.80 20 10.09 1.00 25 1.13-8.95 = 22% den. / 10°C below R.T (202) 8.00 1.26 30 In such T = 10°C NE down to = 5°C in dog water guy may = 0°C archie Since Cy & k, then Cy also decreases with decreasing temp. (Sowers 1962 m Fdm, Engr (p578) - edited by GA Lemando) 7.2 Consolidation of Layared System Approximation μ, Cr. (OC Crust H'= Hi J CV2 Cv2 (LOWOCRANC) #2 H2 . Har Cy2 with 2Hd = H2+H' Y. 1 41. Note: Can extend to more than two layers using same concept

CCL 3/24/96 31/98

AI

1.322 - 1.361 MIT

Malilao 1322 Constitute TT
A. Geometrie Factors
- k-dw
Equivalent spacing = de
$Square de = 1.128 \pm 5$
1/langular de = 1.050 x5
Rh. S=actual Spacing
Drain diameter = dw
spacing ratio n= da/dw
Spacing Factor Fin = $\frac{n^2}{n^2-1}$ Inn - $\frac{3n^2-1}{4n^2}$
Note: Alidrain, du = 0.22#=6.7cm ~ Inn-0.75 for large n
B. Consolidation vs Time Factor (Equal Strain Theory)
$Th = \frac{t ch}{(de)^2} ; ch = \frac{kh}{m_V Y_W} = \frac{kh}{R_V} c_V = rk c_V$
$\overline{U_h} = 1 - e^{-\frac{87\hbar}{F_h}} \text{or } t = \frac{de^2}{8c_h} F_h \ln \frac{1}{(1 - \overline{U_h})}$
$1 - U_h = \frac{u}{v_0} = \frac{1}{F_n} \left[ln(\frac{r}{r_w}) - \frac{(r/r_0)^2 - 1/n^2}{2} \right] e^{-\frac{8T_h}{F_n}}$
where re= de/2 } rw= dw/2
Fig. 1 Barron (1948) Theory for Consoliciation with Vertical Drains (ASCE Transactions Vol 113, Paper No. 2346)

A2

No. 5505 Engineer's Computation Pad

.

3/90 3/3/98

TAVENAS ET AL.: II

			-				-		
Site	Depths (m)	w (%)	₩L (%)	^w p (%)	<i>I</i> p (%)		С <i>F</i> %<2µ	σ _p ' (kPa)	C _c
			Champ	lain sea	a clays				
St-Zotique	2.00	91	61	25	36	1.8	80	50	6.0
-	to	to	to	to	to	to	to .	to	to
	17.00	63	43	23	20	2.2	60	240	2.0
Fort Lennox	6.10	79	70	22	48	. 1.2	81	180	3.0
St-Hilaire	9.50	69	55	23	32	1.4	71 [.]	125	4.0
Mascouche	3.80	61	55	24	31	1.2	76	290	2.8
Louiseville	2.90	79	71	27	44	1.2	77	80	3.7
	to	to	to	to	to	to	to	to	to
	26.00	60	59	25	34	0.8	85	300	2.2
Batiscan	5.50	80	35	22	17	2.6	77	80	2.2
• •	to	to	to	to	to	to	to	to	to
	20.50	71	54	24	31	1.5	91	190	4.5
St-Thuribe	6.90	52	44	22	22	1.3	44	195	1.2
St-Alban	1.90	90	53	25	28	2.7	78	40	2.5
	to	to	to	to	to	to	to	to	to
	7.80	40	28	18	10	2.0	31	100	1.2
		1	Other C	Canadia	n clays	i			
B2	4.90	31 [.]	30	15	15	1.4	36	150	0.3
	to	to	to	to	to	to	to	to	to
	13.10	38	20	14	06	2.9	43	105	0.5
B6	2.80	53	24	14	21	2.1	76	130	0.7
	to	to	to	to	to	to	to	to.	to
	13.40	29	44	25	09	0.9	51	180	0.3
Matagami*	1.90	108	74	25	49	2.3	91	55	5.6
-	to	to	to	to	to	to	to	to	to
	10.30	48	48	28	20	1.4	65	90	1.2
			O	ther cla	ys				
Atchafalaya	20.80	65	99	37	62	0.5	76	160	1.1
Bäckebol	5.40	81	74	28	46	1.1	59	55	2.2
Lilla Mellösa	4.30	104	111	38	73	0.9	63	40	3.1

TABLE 1. Properties of the investigated clays

*Properties measured on bulk specimen.

FIG. 12. Comparison of vertical and horizontal permeabilities in intact natural clays.

Olson & Daniel (1981) Astm STP 746 Marine clays: rk = kh/kv = 1 -1.5 typically Larsson (1981) SGR No.12 TK=Kh/Ky=1 Swedish clays Also sace Fig. 12 Sheet D2

С2

All are medium - soft sedimentary clays

N

of moderate-high

Mostly marine

T 2/3

CCL 3/87 3/3/98

Engineer's Computation Pad

