### 1.76 Aquatic Chemistry- Problem Set 1 Solutions

1. Book problem $1.2 \mathrm{a}, \mathrm{f}, \mathrm{g}$, i.

Recipe: $\left[\mathrm{Na}_{2} \mathrm{SO}_{4}\right]_{\mathrm{T}}=\mathrm{X} \quad\left[\mathrm{H}_{2} \mathrm{~S}\right]=\mathrm{Y} \quad\left[\mathrm{H}_{2} \mathrm{O}\right]=55.4 \mathrm{M}$
Reactions: $\quad \mathrm{H}_{2} 0=\mathrm{OH}^{-}+\mathrm{H}^{+} ; \quad \mathrm{H}_{2} \mathrm{~S}=\mathrm{HS}^{-}+\mathrm{H}^{+} ; \quad \mathrm{HS}=\mathrm{S}^{2-}+\mathrm{H}^{+}$
Spp: $\quad \mathrm{H}_{2} 0, \mathrm{OH}^{-}, \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HS}^{-}, \mathrm{S}^{2-}, \mathrm{Na}^{+}, \mathrm{SO}_{4}{ }^{2-}$
\# components = \# spp - \# rxn: 8-3=5.
All choices have five components, so this condition is met.
For a proper component set, each species must be uniquely expressible in terms of the components.
1.2 a) a valid component set

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{SO}_{4}{ }^{2-}$ | $\mathrm{H}_{2} \mathrm{~S}$ | $\mathrm{Na}^{+}$ | $\mathrm{OH}^{-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} 0$ | 1 |  |  |  |  |
| $\mathrm{OH}^{-}$ |  |  |  |  | 1 |
| $\mathrm{H}^{+}$ | 1 |  |  | -1 |  |
| $\mathrm{H}_{2} \mathrm{~S}$ |  |  | 1 |  |  |
| $\mathrm{HS}^{-}$ | -1 |  | 1 |  | 1 |
| $\mathrm{~S}^{2-}$ | -2 |  | 1 |  | +2 |
| $\mathrm{SO}_{4}^{2-}$ |  | 1 |  |  |  |
| $\mathrm{Na}^{+}$ |  |  |  | 1 |  |

1.2 f ) a valid component set

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{SO}_{4}{ }^{2-}$ | $\mathrm{H}_{2} \mathrm{~S}$ | $\mathrm{Na}^{+}$ | $\mathrm{S}^{2-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | 1 |  |  |  |  |
| $\mathrm{OH}^{-}$ | 1 |  | $-1 / 2$ |  | $1 / 2$ |
| $\mathrm{H}^{+}$ |  |  | $1 / 2$ |  | $-1 / 2$ |
| $\mathrm{H}_{2} \mathrm{~S}$ |  |  | 1 |  |  |
| $\mathrm{HS}^{-}$ |  |  | $1 / 2$ |  | $1 / 2$ |
| $\mathrm{~S}^{2-}$ |  |  |  |  | 1 |
| $\mathrm{SO}_{4}{ }^{2-}$ |  | 1 |  |  |  |
| $\mathrm{Na}^{+}$ |  |  |  | 1 |  |

1.2 g ) These components are not independent. For example $\mathrm{SO}_{4}{ }^{2-}=1 \mathrm{Na}_{2} \mathrm{SO}_{4}-2 \mathrm{Na}^{+}$
1.2 i) a valid component set.

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{H}^{+}$ | $\mathrm{O}_{2}{ }^{\circ}$ | $\mathrm{Na}^{+}$ | $\mathrm{S}^{2-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | 1 |  |  |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |  |  |
| $\mathrm{H}^{+}$ |  | 1 |  |  |  |
| $\mathrm{H}_{2} \mathrm{~S}$ |  | 2 |  |  | 1 |
| $\mathrm{HS}^{-}$ |  | 1 |  |  | 1 |
| $\mathrm{~S}^{2-}$ |  |  |  |  | 1 |
| $\mathrm{SO}_{4}{ }^{2-}$ |  |  | 2 |  | 1 |
| $\mathrm{Na}^{+}$ |  |  |  | 1 |  |

## 2. River water...

Recipe: $\quad[\mathrm{NaCl}]_{\mathrm{T}}=1 \times 10^{-4} \mathrm{M} \quad\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=1 \times 10^{-3} \mathrm{M}$

$$
\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}=3 \times 10^{-4} \mathrm{M} \quad\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}=3 \times 10^{-3} \mathrm{M}
$$

$$
\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}=2 \times 10^{-3} \mathrm{M}
$$

## 2a)

Spp present at eq.: $\mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}, \mathrm{HCO}_{3}{ }^{-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{Cl}^{-}, \mathrm{Na}^{+}, \mathrm{Ca}^{2+}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{Mg}^{2+}$
Rxns to consider:

$$
\begin{array}{ll}
\mathrm{H}_{2} 0=\mathrm{OH}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right] \\
\mathrm{H}_{2} \mathrm{CO}_{3}^{*}=\mathrm{HCO}_{3}^{-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 1}=\left[\mathrm{HCO}_{3}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right] \\
\mathrm{HCO}_{3}^{-}=\mathrm{CO}_{3}^{2-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{CO}_{3}^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HCO}_{3}^{-}\right]
\end{array}
$$

We do not consider these reactions:
$\mathrm{H}_{2} \mathrm{SO}_{4}=\mathrm{HSO}_{4}{ }^{-}+\mathrm{H}^{+}$, because $\mathrm{H}_{2} \mathrm{SO}_{4}$ is a strong acid, and dissociation is complete $\mathrm{HSO}_{4}^{-}=\mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}$, because $\mathrm{HSO}_{4}^{-} \ll \mathrm{SO}_{4}{ }^{2-}$ in solutions with $\mathrm{pH}>2.9$ (most of the systems in which we're interested. Except for maybe Eoghen...)
$\mathrm{HCO}_{3}{ }^{-}+\mathrm{OH}^{-}=\mathrm{CO}_{3}{ }^{2-}$, because it is redundant. This $\mathrm{K}_{\mathrm{eq}}$ expression can be derived from equations 1 and 3 .
$11 \mathrm{spp}-3 \mathrm{rxn}=8$ components

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{H}^{+}$ | $\mathrm{HCO}_{3}^{-}$ | $\mathrm{Na}^{+}$ | $\mathrm{Ca}^{2+}$ | $\mathrm{Cl}^{-}$ | $\mathrm{Mg}^{2+}$ | $\mathrm{SO}_{4}{ }^{2-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | 1 |  |  |  |  |  |  |  |
| $\mathrm{H}^{+}$ |  | 1 |  |  |  |  |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ |  | 1 | 1 |  |  |  |  |  |
| $\mathrm{HCO}_{3}^{-}$ |  |  | 1 |  |  |  |  |  |
| $\mathrm{CO}_{3}^{2-}$ |  | -1 | 1 |  |  |  |  |  |
| $\mathrm{Na}^{+}$ |  |  |  | 1 |  |  |  |  |
| $\mathrm{Ca}^{2+}$ |  |  |  |  | 1 |  |  |  |
| $\mathrm{Cl}^{-}$ |  |  |  |  |  | 1 |  |  |
| $\mathrm{Mg}^{2+}$ |  |  |  |  |  |  | 1 |  |
| $\mathrm{SO}_{4}{ }^{2-}$ |  |  |  |  |  |  |  | 1 |
| $\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}$ | -1 | 1 | 1 |  |  |  |  |  |
| $\left[\mathrm{NaCl}_{\mathrm{T}}\right.$ |  |  |  | 1 |  | 1 |  |  |
| $\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}$ |  |  |  |  | 1 |  |  | 1 |
| $\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}$ |  | -1 | 1 |  | 1 |  |  |  |
| $\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$ |  | -1 | 1 |  |  |  | 1 |  |
| $\left[\mathrm{H}_{2} \mathrm{O}_{\mathrm{T}}\right.$ | 1 |  |  |  |  |  |  |  |

(1) TOT H: $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}-\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}-\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
(2) $\mathrm{TOT} \mathrm{CO}_{2}\left(\mathrm{C}_{\mathrm{T}}\right):\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}+\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
(3) TOT Na: $\left[\mathrm{Na}^{+}\right]=[\mathrm{NaCl}]_{\mathrm{T}}$
(4) TOT Ca: $\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}$
(5) TOT Cl: $\left[\mathrm{Cl}^{-}\right]=[\mathrm{NaCl}]_{\mathrm{T}}$
(6) TOT Mg: $\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
(7) $\mathrm{TOT} \mathrm{SO}_{4}:\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}$

And... TOT $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{a}):\left[\mathrm{H}_{2} \mathrm{O}\right]+\left[\mathrm{OH}^{-}\right]=-\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}+\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$
2b) Getting the electroneutrality equation from your Tableaux...

|  | $\mathrm{H}_{2} 0$ | $\mathrm{H}^{+}$ | NaCl | $\mathrm{CaSO}_{4}$ | $\mathrm{CaCO}_{3}$ | $\mathrm{MgCO}_{3}$ | $\mathrm{CO}_{2}$ | HCl |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} 0$ | 1 |  |  |  |  |  |  |  |
| $\mathrm{H}^{+}$ |  | 1 |  |  |  |  |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ | 1 |  |  |  |  |  | 1 |  |
| $\mathrm{HCO}_{3}^{-}$ | 1 | -1 |  |  |  |  | 1 |  |
| $\mathrm{CO}_{3}{ }^{-}$ | 1 | -2 |  |  |  |  | 1 |  |
| $\mathrm{Na}^{+}$ |  | 1 | 1 |  |  |  |  | -1 |
| $\mathrm{Ca}^{2+}$ | -1 | 2 |  |  | 1 |  | -1 |  |
| $\mathrm{Cl}^{-}$ |  | -1 |  |  |  |  |  | 1 |
| $\mathrm{Mg}^{2+}$ | -1 | 2 |  |  |  | 1 | -1 |  |
| $\mathrm{SO}_{4}{ }^{2-}$ | 1 | -2 |  | 1 | -1 |  | 1 |  |
| $\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}$ |  |  |  |  |  |  | 1 |  |
| $\left[\mathrm{NaCl}_{\mathrm{T}}\right.$ |  |  | 1 |  |  |  |  |  |
| $\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}$ |  |  |  | 1 |  |  |  |  |
| $\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}$ |  |  |  |  | 1 |  |  |  |
| $\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$ |  |  |  |  |  | 1 |  |  |
| $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$ | 1 |  |  |  |  |  |  |  |

Our equations are now:
(8) TOTH: $\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Ca}^{2+}\right]+2\left[\mathrm{Mg}^{2+}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HCO}_{3}{ }^{-}\right]-2\left[\mathrm{CO}_{3}{ }^{2-}\right]-\left[\mathrm{Cl}^{-}\right]-2$ $\left[\mathrm{SO}_{4}{ }^{2-}\right]=0$
This readily rearranges to the familiar form of the electroneutrality expression:
$\left[\mathrm{H}^{+}\right]+\left[\mathrm{Na}^{+}\right]+2\left[\mathrm{Ca}^{2+}\right]+2\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+2\left[\mathrm{CO}_{3}{ }^{2-}\right]+\left[\mathrm{Cl}^{-}\right]+2\left[\mathrm{SO}_{4}{ }^{2-}\right]$
(9) TOT Na: $\left[\mathrm{Na}^{+}\right]=[\mathrm{NaCl}]_{\mathrm{T}}$
(10) $\mathrm{TOT} \mathrm{CaSO}_{4}:\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}$
(11) TOT $\mathrm{CaCO}_{3}:\left[\mathrm{Ca}^{2+}\right]-\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}$
(12) TOT $\mathrm{MgCO}_{3}:\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
(13) TOT $\mathrm{CO}_{2}:\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{SO}_{4}{ }^{2-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]-\left[\mathrm{Ca}^{2+}\right]-\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}$
(14) TOT HCl: $-\left[\mathrm{Na}^{+}\right]+\left[\mathrm{Cl}^{-}\right]=0$
$\mathrm{TOTH}(2 \mathrm{~b}):\left[\mathrm{H}_{2} \mathrm{O}\right]+\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]-\left[\mathrm{Ca}^{2+}\right]-\left[\mathrm{Mg}^{2+}\right]+\left[\mathrm{SO}_{4}{ }^{2-}\right]=$ $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$

Verification that the sets of equations are equivalent:
$(1)=(8)+(13)+(14)-(12)-(11)$
$(2)=(13)+(12)+(11)$
$(3)=(9)$
(4) $=(10)+(11)$
$(5)=(14)+(9)$
$(6)=(12)$
(7) $=(10)$
(and TOTH (2a) $=\operatorname{TOTH}(2 b)-(13))$

## 2c) Equivalent solution with strong acids and bases...

From eqn (4), TOT Ca: $\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}=2.3 \times 10^{-3} \mathrm{M}$ Then for recipe $2 \mathrm{c}\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]_{\mathrm{T}}=2.3 \times 10^{-3} \mathrm{M}=10^{-2.64} \mathrm{M}$

From eqn (3), TOT Na: $\left[\mathrm{Na}^{+}\right]=[\mathrm{NaCl}]_{\mathrm{T}}=1 \times 10^{-4} \mathrm{M}$ Then for recipe $2 \mathrm{c}\left[\mathrm{Na}^{+}\right]=[\mathrm{NaOH}]_{\mathrm{T}}=1 \times 10^{-4} \mathrm{M}$

From eqn (5), TOT Cl: $\left[\mathrm{Cl}^{-}\right]=\left[\mathrm{NaCl}_{\mathrm{T}}=1 \times 10^{-4} \mathrm{M}\right.$
Then for recipe $2 \mathrm{c}\left[\mathrm{Cl}^{-}\right]=\left[\mathrm{HCl}_{\mathrm{T}}=1 \times 10^{-4} \mathrm{M}\right.$
From equation (7), TOT SO ${ }_{4}$ : $\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}=3 \times 10^{-4} \mathrm{M}$
Then for recipe 2c $\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]_{\mathrm{T}}=3 \times 10^{-4} \mathrm{M}=10^{-3.52} \mathrm{M}$
From eqn (6), TOT Mg: $\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=1 \times 10^{-3} \mathrm{M}$
Then for recipe 2, $\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{Mg}(\mathrm{OH})_{2}\right]_{\mathrm{T}}=1 \times 10^{-3} \mathrm{M}$
From eqn (2), $\mathrm{TOT} \mathrm{CO}_{2}\left(\mathrm{C}_{\mathrm{T}}\right):\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}+$ $\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=(3+2+1) \times 10^{-3} \mathrm{M}=6 \times 10^{-3} \mathrm{M}$
Then for recipe 2c, $\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=6 \times 10^{-3} \mathrm{M}=10^{-2.22} \mathrm{M}$
2d) More fun, except $\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}=5 \times 10^{-3} \mathrm{M}$.
Part a: The Tableau is unchanged $\left(\mathrm{HCO}_{3}^{-}\right.$is still the principle component, as adding this much $\mathrm{CO}_{2}$ doesn't drop the pH below 6.3), so the equations remain the same. The amounts are higher:
TOTH, new $:\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T} \text {,new }}-\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}-\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=2 \times 10^{-3} \mathrm{M}$ $\mathrm{TOT} \mathrm{CO}_{2}$,new $:\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}, \text { new }}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}+\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=8 \times 10^{-3} \mathrm{M}$

Part c: $\left[\mathrm{CO}_{2}\right]_{\mathrm{T}, \text { new }}=8 \times 10^{-3} \mathrm{M}$; all other recipe amounts are the same.

2e) Bog sediment simulated by equilibration with $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$.
As the system is open, we must chose $\mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ as components.
Now, we must consider the additional equilibria:
$\begin{array}{ll}\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) & \mathrm{K}_{\mathrm{H}, \mathrm{H} 2 \mathrm{~S}}=10^{-0.99} \mathrm{Matm} \\ \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})=\mathrm{HS}^{-1}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{aH} 2 \mathrm{~S}}=10^{-7.02} \\ \mathrm{HS}^{-}=\mathrm{S}^{2-}+\mathrm{H}^{+} & \mathrm{K}_{\mathrm{a} 2, \mathrm{HS}}=10^{-13.9} \\ \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}=\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}(\mathrm{aq}) & \mathrm{K}_{\mathrm{H}, \mathrm{CO} 2}=10^{-1.5} \mathrm{M} \mathrm{atm}\end{array}$
Note: Can count $\mathrm{X}(\mathrm{g})$ as a species and $\mathrm{K}_{\mathrm{H}, \mathrm{X}}$ expression as a rxn, or can count neither. (so \# spp - \# rxns = \# components).

|  | $\mathrm{H}_{2} 0$ | $\mathrm{H}^{+}$ | $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ | $\mathrm{H}_{2} \mathrm{~S}$ | $\mathrm{Na}^{+}$ | $\mathrm{Ca}^{2+}$ | $\mathrm{Cl}^{-}$ | $\mathrm{Mg}^{2+}$ | $\mathrm{SO}_{4}{ }^{2-}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} 0$ | 1 |  |  |  |  |  |  |  |  |
| $\mathrm{H}^{+}$ |  | 1 |  |  |  |  |  |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |  |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}$ |  |  | 1 |  |  |  |  |  |  |
| $\mathrm{HCO}_{3}{ }^{-}$ |  | -1 | 1 |  |  |  |  |  |  |
| $\mathrm{CO}_{3}{ }^{2-}$ |  | -2 | 1 |  |  |  |  |  |  |
| $\mathrm{H}_{2} \mathrm{~S}$ |  |  |  | 1 |  |  |  |  |  |
| $\mathrm{HS}^{-}$ |  | -1 |  | 1 |  |  |  |  |  |
| $\mathrm{~S}^{2-}$ |  | -2 |  | 1 |  |  |  |  |  |
| $\mathrm{Na}^{+}$ |  |  |  |  | 1 |  |  |  |  |
| $\mathrm{Ca}^{2+}$ |  |  |  |  |  | 1 |  |  |  |
| $\mathrm{Cl}^{-}$ |  |  |  |  |  |  | 1 |  |  |
| $\mathrm{Mg}^{2+}$ |  |  |  |  |  |  |  | 1 |  |
| $\mathrm{SO}_{4}^{2-}$ |  |  |  |  |  |  |  |  | 1 |
| $\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}$ | -1 |  | 1 |  |  |  |  |  |  |
| $\left[\mathrm{H}_{2} \mathrm{~S}_{\mathrm{T}}\right.$ |  |  |  | 1 |  |  |  |  |  |
| $\left[\mathrm{NaCl}_{\mathrm{T}}\right.$ |  |  |  |  | 1 |  | 1 |  |  |
| $\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}$ |  |  |  |  |  | 1 |  |  | 1 |
| $\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}$ |  | -2 | 1 |  |  | 1 |  |  |  |
| $\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$ |  | -2 | 1 |  |  |  |  | 1 |  |
| $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$ | 1 |  |  |  |  |  |  |  |  |

TOT $\mathrm{H}_{2} \mathrm{O}:\left[\mathrm{H}_{2} \mathrm{O}\right]+\left[\mathrm{OH}^{-}\right]=-\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}+\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$
TOT H: $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HCO}_{3}^{-}\right]-2\left[\mathrm{CO}_{3}{ }^{2-}\right]-\left[\mathrm{HS}^{-}\right]-2\left[\mathrm{~S}^{2-}\right]=-2\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}-2\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
TOT CO $2\left(\mathrm{C}_{\mathrm{T}}\right):\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}+\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
TOTH2S: $\left[\mathrm{H}_{2} \mathrm{~S}\right]+\left[\mathrm{HS}^{-}\right]+\left[\mathrm{S}^{2-}\right]=\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}$
TOT Na: $\left[\mathrm{Na}^{+}\right]=\left[\mathrm{NaCl}_{\mathrm{T}}\right.$
TOT Ca: $\left[\mathrm{Ca}^{2+}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}$
TOT Cl: $\left[\mathrm{Cl}^{-}\right]=[\mathrm{NaCl}]_{\mathrm{T}}$
TOT Mg: $\left[\mathrm{Mg}^{2+}\right]=\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$
TOT SO $4 .:\left[\mathrm{SO}_{4}{ }^{2-}\right]=\left[\mathrm{CaSO}_{4}\right]_{\mathrm{T}}$
$\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}$ is irrelevant here because the concentration of dissolved $\mathrm{CO}_{2}(\mathrm{aq})\left(\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right)$ is controlled by the equilibration with $\mathrm{CO}_{2}(\mathrm{~g})$ and the pH of the solution (not the initial $\mathrm{CO}_{2}$ of the system).

## 3. Log C v. pH Diagrams.

## For the system described in 2a:

First, we'll derive the equations for the $\log \mathrm{C}$ v. pH diagram. $\mathrm{Na}^{+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{SO}_{4}{ }^{2-}$, and $\mathrm{Cl}^{-}$do not need to appear on your diagram because they are constant, not a function of pH.

We showed in 2a that
$\mathrm{C}_{\mathrm{T}}=\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}+\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}+\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=6 \times 10^{-3} \mathrm{M}=10^{-2.2} \mathrm{M}$
The assumptions that we make are pH dependent, so we must develop piece-wise defined equations for each pH range.

For $\mathbf{p H}<6.3,\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right] \gg\left[\mathrm{HCO}_{3}^{-}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right]$,

$$
\text { so }\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right] \approx \mathrm{C}_{\mathrm{T}} \approx 10^{-2.2} \mathrm{M} .
$$

$\left[\mathrm{HCO}_{3}^{-}\right]=\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}{ }^{*}\right] /\left[\mathrm{H}^{+}\right] \quad\left(\right.$ a rearrangement of $\left.\mathrm{K}_{\mathrm{a} 1}\right)$ $\log \left[\mathrm{HCO}_{3}^{-}\right]=\log \mathrm{K}_{\mathrm{a} 1}+\log \left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\log \left[\mathrm{H}^{+}\right]$ $\log \left[\mathrm{HCO}_{3}^{-}\right]=-6.3-2.2+\mathrm{pH}$

$$
=-8.5+\mathrm{pH}(\mathrm{a} \text { straight line with a slope of }+1)!
$$

$\left[\mathrm{CO}_{3}{ }^{2-}\right]=\mathrm{K}_{\mathrm{a} 2}\left[\mathrm{HCO}_{3}{ }^{-}\right] /\left[\mathrm{H}^{+}\right] \quad$ (a rearrangement of $\mathrm{K}_{\mathrm{a} 2}$. you could use $\mathrm{K}_{\mathrm{a} 1}$ to replace $\left[\mathrm{HCO}_{3}^{-}\right]$or you could proceed as follows) $\log \left[\mathrm{CO}_{3}{ }^{2-}\right]=\log \mathrm{K}_{\mathrm{a} 2}+\log \left[\mathrm{HCO}_{3}{ }^{-}\right]-\log \left[\mathrm{H}^{+}\right]$(Now plug in your eqn for $\left.\log \left[\mathrm{HCO}_{3}^{-}\right]\right)$ $\log \left[\mathrm{CO}_{3}{ }^{2-}\right]=\log \mathrm{K}_{\mathrm{a} 2}+\log \mathrm{K}_{\mathrm{a} 1}+\log \left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\log \left[\mathrm{H}^{+}\right]-\log \left[\mathrm{H}^{+}\right]$ $\log \left[\mathrm{CO}_{3}{ }^{2-}\right]=-10.3-6.3-2.2+\mathrm{pH}+\mathrm{pH}$ $\log \left[\mathrm{CO}_{3}{ }^{2-}\right]=-18.8+2 \mathrm{pH}$ (a straight line with a slope of +2 )!

For $\mathbf{p H}=6.3,\left[\mathrm{HCO}_{3}^{-}\right]=\mathrm{K}_{\mathrm{al}}\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right] /\left[\mathrm{H}^{+}\right]=10^{-6.3}\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right] / 10^{-6.3}$
$\left[\mathrm{HCO}_{3}^{-}\right]=\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]$
For $6.3<\mathbf{p H}<\mathbf{1 0},\left[\mathrm{HCO}_{3}^{-}\right] \gg\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right]$, so $\left[\mathrm{HCO}_{3}^{-}\right] \approx \mathrm{C}_{\mathrm{T}} \approx 10^{-2.2} \mathrm{M}$.

Rearrange $\mathrm{K}_{\mathrm{a} 1}$ and take the $\log$ of both sides to find:

$$
\begin{aligned}
\log \left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right] & =-\log \mathrm{K}_{\mathrm{a1}}+\log \left[\mathrm{HCO}_{3}^{-}\right]+\log \left[\mathrm{H}^{+}\right] \\
\log \left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right] & =+6.3-2.2-\mathrm{pH}=4.1-\mathrm{pH}(\text { a line with a slope of }-1)!
\end{aligned}
$$

Use $\mathrm{K}_{\mathrm{a} 2}$ to find:

$$
\begin{array}{ll}
\log \left[\mathrm{CO}_{3}{ }^{2-}\right] & =\log \mathrm{K}_{\mathrm{a} 2}+\log \left[\mathrm{HCO}_{3}{ }^{-}\right]-\log \left[\mathrm{H}^{+}\right] \\
\log \left[\mathrm{CO}_{3}{ }^{2-}\right] & =-10.3-2.2+\mathrm{pH}=-12.5+\mathrm{pH}
\end{array}
$$

For $\mathbf{p H}=10.3,\left[\mathrm{HCO}_{3}^{-}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]$
For $\mathbf{p H}>10.3,\left[\mathrm{CO}_{3}{ }^{2-}\right] \gg\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right],\left[\mathrm{HCO}_{3}{ }^{-}\right]$

$$
\text { so }\left[\mathrm{CO}_{3}{ }^{2-}\right] \approx \mathrm{C}_{\mathrm{T}} \approx 10^{-2.2} \mathrm{M} .
$$

$\log \left[\mathrm{HCO}_{3}{ }^{-}\right]=\log \left[\mathrm{CO}_{3}{ }^{2-}\right]-\log \mathrm{K}_{\mathrm{a} 2}+\log \left[\mathrm{H}^{+}\right]=-2.2+10.3-\mathrm{pH}=8.1-\mathrm{pH}$
$\log \left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=\log \left[\mathrm{CO}_{3}{ }^{2-}\right]-\log \mathrm{K}_{\mathrm{a} 2}-\log \mathrm{K}_{\mathrm{a} 1}+\log \left[\mathrm{H}^{+}\right]+\log \left[\mathrm{H}^{+}\right]$
$\log \left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=-2.2+10.3+6.3-2 \mathrm{pH}=14.4-2 \mathrm{pH}$

## For all $\mathbf{p H}$ :

$\log \left[\mathrm{H}^{+}\right]=-\mathrm{pH}$
$\log \left[\mathrm{OH}^{-}\right]=\log \mathrm{K}_{\mathrm{w}}-\log \left[\mathrm{H}^{+}\right]=-14+\mathrm{pH}$


Note: These look a lot better when done by hand... You should be able to do these by hand.
Now, use TOTH \& the graph to solve for $\mathbf{p H}$ :
TOTH (from 2a): $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}}-\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}-\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=0$
The possible solutions are:
(1) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right] ;\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right] \gg\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right]$
(2) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right],\left[\mathrm{H}^{+}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]$
(3) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right],\left[\mathrm{OH}^{-}\right] \gg\left[\mathrm{CO}_{3}{ }^{2-}\right],\left[\mathrm{H}^{+}\right]$
(4) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right],\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right]$

The only valid solution is (4), so $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=\left[\mathrm{CO}_{3}{ }^{2-}\right]$. Using $\mathrm{K}_{\mathrm{a} 1}$ and $\mathrm{K}_{\mathrm{a} 2}$ we find, $\left(\left[\mathrm{H}^{+}\right]\left[\mathrm{HCO}_{3}^{-}\right] / \mathrm{K}_{\mathrm{a} 1}\right)=\left(\mathrm{K}_{\mathrm{a} 2}\left[\mathrm{HCO}_{3}^{-}\right] /\left[\mathrm{H}^{+}\right]\right)$
$\left[\mathrm{H}^{+}\right]^{2}=\left[\mathrm{HCO}_{3}^{-}\right]^{*} \mathrm{~K}_{\mathrm{a} 1} * \mathrm{~K}_{\mathrm{a} 2} /\left[\mathrm{HCO}_{3}{ }^{-}\right]$
$\left[\mathrm{H}^{+}\right]^{2}=\mathrm{K}_{\mathrm{a} 1} * \mathrm{~K}_{\mathrm{a} 2}=10^{(-6.3-10.3)}=10^{-16.6}$
$\left[\mathrm{H}^{+}\right]=10^{-8.3} \mathrm{M}, \mathbf{p H}=\mathbf{8 . 3}$

## For the system described in 2d)

The $\log \mathrm{C}$ vs. pH plot is the same, except that $\mathrm{C}_{\mathrm{T}}=8 \times 10^{-3} \mathrm{M}=10^{-2.09} \mathrm{M}$. The intersecting points of the species occur at the same pHs , the slopes are the same, but the plot of the carbonate species are shifted up on the $y$-axis to the higher $C_{T}$ value.

We can use the same plot to solve for the pH . Recall, we showed TOTH: $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]+\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]-\left[\mathrm{CO}_{3}{ }^{2-}\right]=\left[\mathrm{CO}_{2}\right]_{\mathrm{T}, \text { new }}-\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}-\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}=2 \times 10^{-3} \mathrm{M}=10^{-2.7} \mathrm{M}$

The possible solutions are:
(1) $\left[\mathrm{H}^{+}\right]=10^{-2.7} \mathrm{M}$, and $\left[\mathrm{H}^{+}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right]$
(2) $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=10^{-2.7} \mathrm{M}$, and $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{CO}_{3}{ }^{2-}\right],\left[\mathrm{H}^{+}\right]$
(2) is a valid solution, so $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=10^{-2.7} \mathrm{M}$.

Recall from 2d, TOT CO 2 ,new $:\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}^{-}\right]+\left[\mathrm{CO}_{3}{ }^{2-}\right]=8 \times 10^{-3} \mathrm{M}=10^{-2.09} \mathrm{M}$
Assume $\left[\mathrm{HCO}_{3}^{-}\right] \gg\left[\mathrm{CO}_{3}{ }^{2-}\right]$ (a valid assumption when $\mathrm{pH}<10.3$ ).
Then, $\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]+\left[\mathrm{HCO}_{3}{ }^{-}\right]=10^{-2.09} \mathrm{M}$
$\left[\mathrm{HCO}_{3}^{-}\right]=10^{-2.09} \mathrm{M}-\left[\mathrm{H}_{2} \mathrm{CO}_{3}{ }^{*}\right]=10^{-2.09} \mathrm{M}-10^{-2.7} \mathrm{M}=6 \times 10^{-3} \mathrm{M}=10^{-2.2} \mathrm{M}$
From $\mathrm{K}_{\mathrm{a} 1},\left[\mathrm{H}^{+}\right]=\mathrm{K}_{\mathrm{a} 1}\left[\mathrm{H}_{2} \mathrm{CO}_{3}^{*}\right] /\left[\mathrm{HCO}_{3}^{-}\right]=\left(10^{-6.3}\right)\left(10^{-2.7}\right) /\left(10^{-2.2}\right)=10^{-6.8} \mathrm{M}$. $\mathrm{pH}=6.8$

## For the system described in 2e)

This is an open system. The amount of dissolved species of the equilibrated gas will be controlled by Henry's Law. We will develop the equations for $\mathrm{H}_{2} \mathrm{~S}$; the equations for the carbonate system are analogous.

As

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{H}, \mathrm{H} 2 \mathrm{~S}}=10^{-0.99} \mathrm{M} \mathrm{~atm}^{-1}=\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq}) / \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \\
& \mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})=\left(\mathrm{pH}_{2} \mathrm{~S}(\mathrm{~g})\right) \mathrm{K}_{\mathrm{H}, \mathrm{H} 2 \mathrm{~S}} \\
& \quad=(0.5 \mathrm{~atm})\left(10^{-0.99} \mathrm{M} \mathrm{~atm}^{-1}\right) \\
&\left.\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})=10^{-1.29} \mathrm{M} \text { (a straight line independent of } \mathrm{pH}\right)!!
\end{aligned}
$$

From $K_{\mathrm{aH} 2 \mathrm{~S}}=10^{-7.02}$,

$$
\begin{aligned}
\log [\mathrm{HS}-] & =\log \mathrm{K}_{\mathrm{aH2S}}+\log \left[\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})\right]-\log [\mathrm{H}+] \\
= & -7.02-1.29+\mathrm{pH}=-8.31+\mathrm{pH}
\end{aligned}
$$

From $K_{a 2, \mathrm{H} 2 \mathrm{~S}}=10^{-13.9}$,

$$
\begin{aligned}
\log \left[\mathrm{S}^{2-}\right] & =\log \mathrm{K}_{\mathrm{a} 2, \mathrm{H} 2 \mathrm{~S}}+\log [\mathrm{HS}-]-\log [\mathrm{H}+] \\
\log \left[\mathrm{S}^{2-}\right] & =\log \mathrm{K}_{\mathrm{a} 2, \mathrm{HS} 2}+\log \mathrm{K}_{\mathrm{aH2S}}+\log \left[\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})\right]-2 \log [\mathrm{H}+] \\
& =-13.9-7.02-1.29+2 \mathrm{pH}=-22.2+2 \mathrm{pH}
\end{aligned}
$$

## $\log \mathbf{C}$ v. pH- Problem3 (for 2e)- Open System



Use TOTH and the plot to solve the pH of the system:
TOT H: $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HCO}_{3}^{-}\right]-2\left[\mathrm{CO}_{3}{ }^{2-}\right]-\left[\mathrm{HS}^{-}\right]-2\left[\mathrm{~S}^{2-}\right]=-2\left[\mathrm{CaCO}_{3}\right]_{\mathrm{T}}-2\left[\mathrm{MgCO}_{3}\right]_{\mathrm{T}}$ $=-10^{-2.2} \mathrm{M}$

Possible solutions:
(1) $-\left[\mathrm{OH}^{-}\right]=-10^{-2.2} \mathrm{M}$, other spp. negligible
(2) $-\left[\mathrm{HCO}_{3}^{-}\right]=-10^{-2.2} \mathrm{M}$, other spp. negligible
(3) $-2\left[\mathrm{CO}_{3}{ }^{2-}\right]=-10^{-2.2} \mathrm{M}$, other spp. negligible
(4) $-\left[\mathrm{HS}^{-}\right]=-10^{-2.2} \mathrm{M}$, other spp. negligible
(5) $-2\left[\mathrm{~S}^{2-}\right]=-10^{-2.2} \mathrm{M}$, other spp. negligible
(4) is a valid solution, so $\left[\mathrm{HS}^{-}\right]=10^{-2.2} \mathrm{M}$
$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{aH} 2 \mathrm{~S}}\right)\left[\mathrm{H}_{2} \mathrm{~S}(\mathrm{aq})\right] /\left[\mathrm{HS}^{-}\right]=\left(10^{-7.02}\right)\left(10^{-1.29}\right) /\left(10^{-2.2}\right)=10^{-6.1} \mathrm{M}$
$\mathbf{p H}=6.1$, and we can see from the graph that the other spp. in the TOTH equation where negligible, so our assumption holds.

## 4.Open system.

4a) $\left[\mathrm{H}_{2} \mathrm{~S}\right]=\mathrm{K}_{\mathrm{H}, \mathrm{H} 2 \mathrm{~S}} * \mathrm{pH}_{2} \mathrm{~S}=\left(10^{-0.99} \mathrm{M} \mathrm{atm}^{-1}\right) *\left(10^{-0.30} \mathrm{~atm}\right)=10^{-1.29} \mathrm{M}=0.051 \mathrm{M}$ This is independent of pH , so at $\mathrm{pH} 5,7,9,\left[\mathrm{H}_{2} \mathrm{~S}\right]=10^{-1.29} \mathrm{M}=0.051 \mathrm{M}$

We can rearrange the equilibrium expressions to find:

$$
\begin{align*}
{\left[\mathrm{HS}^{-}\right]=} & \left(\mathrm{K}_{\mathrm{a}}\right)\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{H}^{+}\right]  \tag{1}\\
{\left[\mathrm{S}^{-}\right]=} & \left(\mathrm{K}_{\mathrm{a} 2}\right)\left[\mathrm{HSS}^{-}\right] /\left[\mathrm{H}^{+}\right]
\end{align*} \quad(2) \quad \text { (Plug } 1 \text { into } 2 \text { to find): }
$$

| pH | $\left[\mathrm{HS}^{-}\right](\mathrm{M})$ | $\left[\mathrm{S}^{2-}\right](\mathrm{M})$ |
| :--- | :--- | :--- |
| 5 | $5.1 \times 10^{-4}=10^{-3.29}$ | $6.4 \times 10^{-13}=10^{-12.2}$ |
| 7 | $5.1 \times 10^{-2}=10^{-1.29}$ | $6.4 \times 10^{-9}=10^{-8.2}$ |
| 9 | $5.1=10^{0.71}$ | $6.4 \times 10^{-5}=10^{-4.2}$ |

The equations for this plot were derived in problem 3.


4b) Recipe: $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}+\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$
Reactions: $\quad \mathrm{H}_{2} 0=\mathrm{OH}^{-}+\mathrm{H}^{+} \quad \mathrm{Kw}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right]=10^{-14}$

$$
\mathrm{H}_{2} \mathrm{~S}=\mathrm{HS}^{-}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a} 1}=\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{~S}\right]=10^{-7.02}
$$

$$
\mathrm{HS}=\mathrm{S}^{2+}+\mathrm{H}^{+} \quad \mathrm{K}_{\mathrm{a} 2}=\left[\mathrm{S}^{2-}\right]\left[\mathrm{H}^{+}\right] /[\mathrm{HS}][]=10^{-7.02}
$$

Spp: $\quad \mathrm{H}_{2} \mathrm{O}, \mathrm{OH}^{-}, \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HS}^{-}, \mathrm{S}^{2-}$
$6 \mathrm{spp}-3$ rxns $=3$ components

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{H}^{+}$ | $\mathrm{HS}^{-}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | 1 |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |
| $\mathrm{H}^{+}$ |  | 1 |  |
| $\mathrm{H}_{2} \mathrm{~S}$ |  | 1 | 1 |
| $\mathrm{HS}^{-}$ |  |  | 1 |
| $\mathrm{~S}^{2-}$ |  | -1 | 1 |
| $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$ | 1 |  |  |
| $\left[\mathrm{H}_{2} \mathrm{~S}_{\mathrm{T}}\right.$ |  | 1 | 1 |


|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{H}^{+}$ | $\mathrm{H}_{2} \mathrm{~S}$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | 1 |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |
| $\mathrm{H}^{+}$ |  | 1 |  |
| $\mathrm{H}_{2} \mathrm{~S}$ |  |  | 1 |
| $\mathrm{HS}^{-}$ |  | -1 | 1 |
| $\mathrm{~S}^{2-}$ |  | -2 | 1 |
| $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$ | 1 |  |  |
| $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}$ |  |  | 1 |

The Tableau on the left gives two equations (TOTH and TOTHS-) that are equal to $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}$; an unknown quantity. Thus, these equations are not very useful.

The Tableau on the right gives only one equation (TOT H2S) that is equal to $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}$. We want to minimize the number of useless equations, so it is wise to choose the dissolved species of the equilibrated gas as a component. Additionally, the TOTH eqn is equal to a known quantity in this case- fantastic!

TOTH: $\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HS}^{-}\right]-2\left[\mathrm{~S}^{2-}\right]=0$
So $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]+\left[\mathrm{HS}^{-}\right]+2\left[\mathrm{~S}^{2-}\right]$
The possibilities are:

1) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$and $\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right] \gg\left[\mathrm{HS}^{-}\right],\left[\mathrm{S}^{2-}\right]$ :

BUT... when $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right],\left[\mathrm{H}^{+}\right],\left[\mathrm{OH}^{-}\right] \ll\left[\mathrm{HS}^{-}\right]$, so this is not the solution.
2) $\left[\mathrm{H}^{+}\right]=2\left[\mathrm{~S}^{2-}\right]$ and $\left[\mathrm{H}^{+}\right],\left[\mathrm{S}^{2-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{HS}^{-}\right]$

BUT... when $\left[\mathrm{H}^{+}\right]=\left[\mathrm{S}^{2-}\right],\left[\mathrm{H}^{+}\right],\left[\mathrm{S}^{2-}\right] \ll\left[\mathrm{OH}^{-}\right],\left[\mathrm{HS}^{-}\right]$, so this is not the solution.
3) $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HS}^{-}\right]$and $\left[\mathrm{H}^{+}\right],\left[\mathrm{HS}^{-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{S}^{2-}\right] \ldots$ ah ha! There is a place on the plot where this is true, and it looks like it's around $\mathrm{pH}=4.1$.

We can find the true pH using the TOTH equation, the assumptions in (3), $\mathrm{K}_{\mathrm{H}}$ and $\mathrm{K}_{\mathrm{a} 1}$ :
$\left[\mathrm{H}^{+}\right]=[\mathrm{HS}-]=\left(\mathrm{K}_{\mathrm{a} 1}\right)\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]^{2}=\left(\mathrm{K}_{\mathrm{a} 1}\right)\left(\mathrm{K}_{\mathrm{H}, \mathrm{H} 2 \mathrm{~S}}\right)(0.5 \mathrm{~atm})=\left(10^{-7.02}\right)\left(10^{-0.99}\right)\left(10^{-0.3}\right)=\left(10^{-8.31}\right)$
$\mathrm{pH}=4.1_{6}$ (This subscript means that the subscripted digiti is insignificant).
It remains to show that our assumptions hold by plugging pH into the appropriate eqns:

$$
\begin{aligned}
& {\left[\mathrm{HS}^{-}\right]=\left(\mathrm{K}_{\mathrm{a} 1}\right)\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{H}^{+}\right]=10^{-4.1} \mathrm{M}} \\
& {\left[\mathrm{OH}^{-}\right]=\mathrm{Kw} /\left[\mathrm{H}^{+}\right]=10^{-9.8} \mathrm{M}} \\
& {\left[\mathrm{~S}^{2-}\right]=\left(\mathrm{K}_{\mathrm{a} 2}\right)\left(\mathrm{K}_{\mathrm{a} 1}\right)\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{H}^{+}\right]^{2}=10^{-13.9} \mathrm{M}}
\end{aligned}
$$

So the assumption $\left[\mathrm{H}^{+}\right],\left[\mathrm{HS}^{-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{S}^{2-}\right]$ holds!

## 4c) adding NaOH .

Adding base, we expect the pH to increase.

|  | $\mathrm{H}_{2} \mathrm{O}$ | $\mathrm{H}^{+}$ | $\mathrm{H}_{2} \mathrm{~S}$ | $\mathrm{Na}^{+}$ |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}_{2} \mathrm{O}$ | 1 |  |  |  |
| $\mathrm{OH}^{-}$ | 1 | -1 |  |  |
| $\mathrm{H}^{+}$ |  | 1 |  |  |
| $\mathrm{H}_{2} \mathrm{~S}$ |  |  | 1 |  |
| $\mathrm{HS}^{-}$ |  | -1 | 1 |  |
| $\mathrm{~S}^{2-}$ |  | -2 | 1 |  |
| $\mathrm{Na}^{+}$ |  |  |  | 1 |
| $\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}}$ | 1 |  |  |  |
| $\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}$ |  |  | 1 |  |
| $[\mathrm{NaOH}]_{\mathrm{T}}$ | 1 | -1 |  | 1 |

The new TOTH:
$\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HS}^{-}\right]-2\left[\mathrm{~S}^{2-}\right]=-[\mathrm{NaOH}]_{\mathrm{T}}=-10^{-2.3} \mathrm{M}$
The possible solutions are:

1) $-\left[\mathrm{OH}^{-}\right]=-10^{-2.3} \mathrm{M} ;\left[\mathrm{OH}^{-}\right] \gg\left[\mathrm{HS}^{-}\right],\left[\mathrm{S}^{2-}\right],\left[\mathrm{H}^{+}\right]$
2) $-\left[\mathrm{HS}^{-}\right]=-10^{-2.3} \mathrm{M} ;\left[\mathrm{HS}^{-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{S}^{2-}\right],\left[\mathrm{H}^{+}\right]$
3) $-2\left[\mathrm{~S}^{2-}\right]=-10^{-2.3} \mathrm{M} ;\left[\mathrm{S}^{2-}\right] \gg\left[\mathrm{OH}^{-}\right],\left[\mathrm{HS}^{-}\right],\left[\mathrm{H}^{+}\right]$

There is a point on the graph where \# 2 is true, so we can solve \#2 for $\left[\mathrm{H}^{+}\right]$:
$\left[\mathrm{HS}^{-}\right]=10^{-2.3} \mathrm{M}=\left(\mathrm{K}_{\mathrm{al}}\right)\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=\left(\mathrm{K}_{\mathrm{a} 1}\right)\left[\mathrm{H}_{2} \mathrm{~S}\right] /\left[\mathrm{HS}^{-}\right]=10^{-5.99} \mathrm{M}, \mathbf{p H} \approx \mathbf{6 . 0}$
4d) adding $\mathbf{H N O}_{3}$. Adding acid, we expect the pH to decrease.

$$
\begin{array}{lllll}
\mathrm{H}_{2} \mathrm{O} & \mathrm{H}^{+} & \mathrm{H}_{2} \mathrm{~S} & \mathrm{NO}_{3}^{-}
\end{array} \text {The new TOTH: }
$$

$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{OH}^{-}$
$\mathrm{H}^{+}$
$\mathrm{H}_{2} \mathrm{~S}$
HS
$\mathrm{S}^{2-}$
$\mathrm{NO}_{3}^{-}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]_{\mathrm{T}} \quad 1$
$\left[\mathrm{H}_{2} \mathrm{~S}\right]_{\mathrm{T}}$
$\left[\begin{array}{lll}{\left[\mathrm{HNO}_{3}\right]_{\mathrm{T}}} & 1 & 1\end{array}\right.$
$\left[\mathrm{H}^{+}\right]-\left[\mathrm{OH}^{-}\right]-\left[\mathrm{HS}^{-}\right]-2\left[\mathrm{~S}^{2-}\right]=\left[\mathrm{HNO}_{3}\right]_{\mathrm{T}}=10^{-3} \mathrm{M}$
The only possible solution is
$\left[\mathrm{H}^{+}\right]=10^{-3} \mathrm{M}$, so $\mathbf{p H}=\mathbf{3 . 0}$

## 5. Open v. Closed. (Answer from Linda Kalnejais' solutions, 2001).

A closed system cannot exchange matter with its surroundings. In an open system, there is free exchange of materials across the boundaries of the system. For example, gas exchange across a water-air interface or precipitation/ dissolution of a solid phase represent material fluxing between a system and its surroundings.

Some things to assess if a lake can be modeled as an open system:

- What is the surface area: volume ( $\mathrm{SA}: \mathrm{V}$ ) ratio of the lake?

high SA:V

low SA:V

A high SA:V ratio facilitates gas exchange, whereas a low ratio acts to isolate deeper waters.

- Is the lake well-mixed or is it stratified? If the lake is stratified the lower layers are somewhat isolated and so a closed system model may be appropriate.
- Is the lake sheltered? Gas exchange may be restricted if there is not much wind blowing over the lake
- Is there input/output of material from the sediments?
- What are the timescales of the reactions I am interested in, and how do they compare to the timescales of gas exchange or precipitation etc? If the timescales of exchange are much greater than those of interest, transfer of material is the slow process, so a closed model is appropriate.

