Lecture 16, 17- Biological Reaction Kinetics
From = P.L. McCarty 1975 Stoichiometry of Biological Reactions Progress in Water Technology, Vol 7, No 1, Pp. 157-172

Chemical equation for biological oxidation of wastes:

$$
\begin{array}{ll}
\underset{\text { Casein }}{\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+3 \mathrm{O}_{2}} \xrightarrow{\text { bacteria }} & \xrightarrow{\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{O}_{2} \mathrm{~N}}+\mathrm{NH}_{3}+3 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \tag{1}\\
\text { (in dairy waste) } & \text { cells }
\end{array}
$$

Alternative representation of cells is $\mathrm{C}_{60} \mathrm{H}_{87} \mathrm{O}_{23} \mathrm{~N}_{12} \mathrm{P}$
Note, Redfield ratio is $\mathrm{C}_{106} \mathrm{~N}_{16} \mathrm{P}$

$$
\text { Algae }=C_{106} H_{263} O_{110} N_{16} P
$$

Above reaction requires bacteria to catalyse the reaction
Type of bacteria in this reaction are aerobic heterotroph
Heterotrophic microbes use organic carbon as energy and carbon source for new growth

Autotrophic microbes use CO_{2} as carbon source (e.g. algae)

Aerobic microbes use oxygen as an electron acceptor

Anaerobic microbes use something other than oxygen as electron acceptor

Anoxic microbes use nitrate or nitrite reduction to N_{2} (denitrification)

Microbes may be obligate aerobes - able to use O_{2} only - or facultative - able to use O_{2} or $\mathrm{NO}_{2}^{-} / \mathrm{NO}_{3}^{-}$

To understand electron acceptor concept, it is helpful to break down Equation 1 into synthesis and energy components

Synthesis (of new cells)

$$
\frac{1}{2} \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+\frac{1}{8} \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}+\frac{1}{4} \mathrm{NH}_{3}
$$

Energy generation

$$
\frac{3}{8} \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+3 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+\frac{3}{4} \mathrm{NH}_{3}+\frac{9}{8} \mathrm{H}_{2} \mathrm{O}
$$

Disassemble into half reactions to highlight electron donors and acceptors
synthes is
Donor $\frac{5}{8} \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+\frac{65}{8} \mathrm{H}_{2} \mathrm{O} \rightarrow 5 \mathrm{CO}_{2}+\frac{10}{8} \mathrm{NH}_{3}+20 \mathrm{H}^{+}+20 e^{-}$
Acceptor $5 \mathrm{CO}_{2}+\mathrm{NH}_{3}+2 \mathrm{OH}^{+}+2 \mathrm{Oe}^{-} \rightarrow \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}+8 \mathrm{H}_{2} \mathrm{O}$

Energy
Donor $\frac{3}{8} \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+\frac{39}{8} \mathrm{H}_{2} \mathrm{O} \rightarrow 3 \mathrm{CO}_{2}+\frac{3}{4} \mathrm{NH}_{3}+12 \mathrm{H}^{+}+12 e^{-}$
Acceptor $3 \mathrm{O}_{2}+12 \mathrm{H}^{+}+12 \mathrm{e}^{-} \rightarrow 6 \mathrm{H}_{2} \mathrm{O}$
These equations can be normalized such that there is a single electron on right-hand side of each equation

$$
\text { Cells } \quad \frac{1}{20} \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}+\frac{2}{5} \mathrm{H}_{2} \mathrm{O}=\frac{1}{4} \mathrm{CO}_{2}+\frac{1}{20} \mathrm{NH}_{3}+\mathrm{H}^{+}+\mathrm{e}^{-}
$$

Donor $\quad \frac{1}{32} \mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}+\frac{13}{32} \mathrm{H}_{2} \mathrm{O}=\frac{1}{4} \mathrm{CO}_{2}+\frac{1}{16} \mathrm{NH}_{3}+\mathrm{H}^{+}+\mathrm{e}^{-}$
Acceptor

$$
\frac{1}{2} \mathrm{H}_{2} \mathrm{O}=\frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+e^{-}
$$

This reorganization of the equations illustrates:
Energy is required to create new cells
Energy is created in the electron donor to electron acceptor transfer
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ acts as an electron donor (there are many others as well)
O_{2} acts as an electron acceptor
other anaerobic electron acceptors are=

Differences in energy production associated with different electron acceptors is illustrated by reactions of glucose on page 4. Aerobic oxidation is most favorable, denitrification close, and others very inferior in terms of free energy produced

Source for slide: Bruce E. Rittman and Perry L. McCarty, 2001 Environmental Biotechnology= Privicipals and Applications. McGraw-Hill, New York.

Reactions shown above are for casein $\left(\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}\right)$ and glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$

Generic representation of municipal wastewater

$$
15=C_{10} H_{19} O_{3} \mathrm{~N}
$$

No actual compound corresponds to this formula hence no evaluation of energy, etc. is possible

Aerobic Oxidation

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

Denitrification

$$
5 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+24 \mathrm{NO}_{3}^{-}+24 \mathrm{H}^{+} \longrightarrow 30 \mathrm{CO}_{2}+42 \mathrm{H}_{2} \mathrm{O}+12 \mathrm{~N}_{2}
$$

Sulfate Reduction

$$
2 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{SO}_{4}^{2-}+9 \mathrm{H}^{+} \longrightarrow 12 \mathrm{CO}_{2}+12 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{~S}+3 \mathrm{HS}^{-}
$$

Methanogenesis

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 3 \mathrm{CO}_{2}+3 \mathrm{CH}_{4}
$$

Ethanol Fermentation

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH} \quad-244
$$

Figure by MIT OCW.
Adapted from: Rittman, Bruce E., and Perry L. McCarty. Environmental Biotechnology: Principals and Applications. New York, NY: McGraw-Hill, 2001.

Part of biological oxidation goes to bacterial growth
Bacterial growth requires:

1. Carbon source to form cellular material
2. Energy source to fuel cell synthesis
phototrophs get energy from light
chemotrophs get energy from chemical reaction's chemoautotrophs from inorganic chemical reactions (e.g. nitrifying bacteria use ammonia and nitrite $=$

$$
\begin{aligned}
& 2 \mathrm{NH}_{4}^{+}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}^{-}+4 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NO}_{2}^{-}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{3}^{-}
\end{aligned}
$$

Chemoheterotrophs from oxidation of organics If chemotrophs use an external electron acceptor they have a respiratory mechanism

$$
\left(\text { e.g. } \mathrm{O}_{2}, \mathrm{NO}_{3}^{-}, \mathrm{Fe}^{2+}, \mathrm{SO}_{4}^{-}\right)
$$

If chemotrophs use an internal (organic) election acceptor they have a fermentive mechanisms
3. Nutrient source to form cell material

Macronutrients - N and P
Other major nutrients - 5 KMgCaFe NaCl
Minor nutrients - Zn Mn Mo Se Cu Ni
Bacteria grow rapidly -
Bacteria reproduce in $<20 \mathrm{~min}$ to several days (generation time)
One bacterium with 30 min generation time $\rightarrow 24^{2}=16.8$ million in 12 hours
Mass $=5 \times 10^{-13} \mathrm{~g} \rightarrow 8 \times 10^{6} \mathrm{~g}=8 \mu \mathrm{~g}$
large numbers not necessarily mass
Mass calculation assumes $1 \mu \mathrm{~m}$ sphere with $\rho=1 \mathrm{~g} / \mathrm{cm}^{3}$

Bacteria growing at high rates sooner or later outgrow available resources

In batch cultures (fixed quantity of biodegradable organics and nutrients with no inflow) growth looks like =

Biological wastewater treatment depends on balance between substrate and biomass - ideally, biological reactor will operate in stationary growth phase

Need to understand =

1. How much substrate yields how much biomass
2. How quickly substrate is used
3. Biomass yield

$$
Y=\frac{\text { mass biomass produced }}{\text { mass substrate consumed }}
$$

A. Can determine yield from measurements

Organic matter in waste is measured as BOD or COD (discussed further below)

Biomass is taken to be VSS - volatile suspended solids

$$
\begin{aligned}
\text { TSP }= & \text { total suspended solids } \\
= & \text { mass of solids captured on } 1.58 \mu \mathrm{~m} \\
& \text { glass-fiber filter }
\end{aligned}
$$

VSS = volatile suspended solids
$=$ mass of solids burned off at $500^{\circ} \mathrm{C}$
FSS = fixed suspended solids
= residual after ignition

$$
=T S S-V S S
$$

TS = total solids
= mass of residue after evaporation and drying at $104^{\circ} \mathrm{C}$

TDS = total dissolved solids
$=$ mass of solids that pass through
filter and remain after drying at $104^{\circ} \mathrm{C}$

$$
T S=T S S+T D S
$$

B. Can determine yield from stoichiometry

Eng. glucose \rightarrow cells

$$
3 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+8 \mathrm{O}_{2}+2 \mathrm{NH}_{3} \rightarrow 2 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+8 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}
$$

MW:
$3(180) \quad 8(32) \quad 2(17) \quad 2(113)$

Yield in terms of glucose $=$

$$
Y=\frac{2 \text { moles }(113 \mathrm{~g} / \mathrm{mol})}{3 \text { moles }(180 \mathrm{~g} / \mathrm{mol})}=0.42 \frac{9 \text { celts }}{9 \text { glucose }}
$$

yield in terms of $C O D=$
COD is Chemical Oxygen Demand = amount of oxygen needed to fully oxidize the substrate

For glucose $=\quad \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

$$
\text { COD: } \begin{aligned}
\frac{\Delta \mathrm{O}_{2}}{\Delta \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} & =\frac{6 \mathrm{~mol} \cdot 32 \mathrm{~g} / \mathrm{mol}}{1 \mathrm{~mol} \cdot 180 \mathrm{~g} / \mathrm{mol}} \\
& =1.07 \frac{\mathrm{~g} \mathrm{CoD}}{\mathrm{~g} \text { glucose }}
\end{aligned}
$$

Yield for COD

$$
\begin{aligned}
Y & =\frac{2 \text { moles } \cdot 113 \mathrm{~g} / \mathrm{mol}}{3 \text { mot glucose } \cdot 180 \mathrm{~g} / \text { mol glucose } \cdot 1.07 \mathrm{~g} \mathrm{O}_{2} / \mathrm{g} \text { glucose }} \\
& =0.39 \frac{\mathrm{~g} \text { celts }}{\mathrm{gCOD}}
\end{aligned}
$$

Actual yields are less since cells use some substrate for energy to maintain cell
c. Can determine yield from bio energetics

Compute Gibbs free energy for synthesis (cell production) and energy generation components of reaction

This yields equation for mole of substrate generated per mole of substrate used.

Method 1 is best, but requires field, pilot or lab installation Methods 2 and 3 provide theoretical context, predictive ability

For design, also need to know O_{2} requirenient
O_{2} is used to convert glucose to energy and to create biomass

From stoichiometry

$$
\begin{aligned}
3 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} & +8 \mathrm{O}_{2}+2 \mathrm{NH}_{3} \rightarrow 2 \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+8 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O} \\
3(180) & 8(32) \\
\frac{\mathrm{O}_{2} \text { used }}{\text { glucose }} & =\frac{8 \mathrm{~mol} \cdot 32 \mathrm{gO}_{2} / \mathrm{mol}}{3 \mathrm{~mol} \cdot 180 \mathrm{~g} \text { glucose } / \mathrm{mol}} \\
& =0.474 \frac{9 \mathrm{O}_{2}}{9 \mathrm{glucose}} \\
\frac{O_{2} \text { used }}{\text { COD }} & =0.474 \frac{9 \mathrm{O}_{2}}{\mathrm{ggluc}} / 1.07 \frac{\mathrm{~g} \mathrm{cov}}{\mathrm{~g} \text { glue }} \\
& =0.44 \frac{9 \mathrm{O}_{2}}{9 \mathrm{COD}}
\end{aligned}
$$

Why is this not $1.0 \frac{9 O_{2}}{9 \operatorname{COD}}$?

Difference is in COD represented by cells COD of cells is:

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+\mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \\
& \frac{5(32)}{9 \mathrm{COD}}=\frac{5(32)}{113}=1.42 \frac{9 \mathrm{COD}}{9 \text { cell }}
\end{aligned}
$$

Cell yield showed $Y=0.42 \frac{9 \text { cells }}{9 \text { glue }}$

$$
\begin{aligned}
& =0.42 \frac{9 \text { cells }}{g \text { glue }} \times \frac{1.42 \frac{g \text { cod }}{g \text { cells }}}{1.07 \frac{g \text { coD }}{g g l u c}} \\
& =0.56 \frac{9 \text { COD cells }}{\mathrm{gcoD} \text { glue }}
\end{aligned}
$$

of 1 g COD entering as glucose, 0.56 goes into producing $C O D$ as cells and 0.44 is oxidized by O_{2}

Waste is often expressed as BOD - biochemical oxygen demand
BOD captures three processes:
Oxidation to produce energy:

$$
\text { Waste }+\mathrm{O}_{2} \xrightarrow{\text { bact. }} \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3}+\begin{gathered}
\text { other } \\
\text { end } \\
\text { products }
\end{gathered}+\text { energy }
$$

Cell synthesis:

$$
\text { Waste }+\mathrm{O}_{2} \text { + energy } \xrightarrow{\text { bact. }} \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}
$$

Endogenous respiration (cell's use of own biomass to get energy for cell maintenance)

$$
\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}+5 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+\mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

BOD is measured in a standard bottle test:

Wastewater + bacteria "seed" put in bottle Dissolved oxygen (DO) concentration measured Bottle is sealed and incubated for t days
DO is measured at end of t days

$$
\triangle D O=B O D
$$

t is traditionally 5 days $=B O D S$
t is sometimes 20 days $=$ BOD 20
used when BoDS is too low to. measure or for slowly degrading waste
t is occasionally very long - $100+$ days used for papermill wastewater, other wastewater with very slowly degrading wastes - known as long-term BOD tests $=$ BOD "ultimate BOD" or $\triangle B O D$

BOD develops over time:

Dilution water at $20^{\circ} \mathrm{C}$ containing dissolved oxygen. Prepared by adding $\mathrm{KH}_{2} \mathrm{PO}_{4}$, $\mathrm{K}_{2} \mathrm{HPO}_{4}, \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{NH}_{4} \mathrm{Cl}$, $\mathrm{MgSO}_{4}, \mathrm{CaCl}_{2}$, and FeCl_{3} to distilled water
$300-\mathrm{ml}$ BOD bottle with trapped stopper and flared mouth for water seal

Measured amount of (dechlorinated) wastewater depending on strength

Seed microorganisms to oxidize the waste organics if microbes are not present in wastewater, for instance, as a result of effluent chlorination
(A)

Aerated dilution water at $20^{\circ} \mathrm{C}$, if necessary

Polluted water sample adjusted to a temperature of $20^{\circ} \mathrm{C}$ and aerated to increase the dissolved oxygen to near saturation
(B)

Preparation of biochemical oxygen demand (BOD) tests on (A) Wastewater sample, (B) Polluted surface water.

Figure by MIT OCW.
Adpated from: Viessman, W., Jr., and M. J. Hammer. Water Supply and Pollution Control. 7th ed. Upper Saddle River, NJ: Pearson Education, Inc., 2005, p. 318.

BOD curve vs, t follows first-order relation

$$
\text { BODE }=\operatorname{BODu}\left(1-e^{-k_{1} t}\right)
$$

$k_{1}=$ deoxygenation coefficient
(note V\{H defines this in terms of base 10, but base e is move conventional)

As: BOD is consumed (biodegraded) in bottle, DO is also consumed. for long tests, bottle needs to be reaerated (measuring Do before and after) occasionally to prevent creation of anaerobic conditions

Actual BOD test is not as simple as shown. Real BOD tests look like : (se epg 14)

NBOD represents oxygen demand by nitrifying bacteria converting ammonia to nitrate=

$$
\begin{aligned}
& 2 \mathrm{NH}_{4}^{+}+3 \mathrm{O}_{2} \xrightarrow{\text { nitrosomonas }} 2 \mathrm{NO}_{2}^{-}+4 \mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O} \\
& 2 \mathrm{NO}_{2}^{-}+\mathrm{O}_{2}
\end{aligned}
$$

Standard 5-Day
BOD Value

Hypothetical biochemical oxygen demand reaction curve showing the cabornaceous \& nitrification reactions.

Figure by MIT OCW.
Adpated from: Viessman, W., Jr., and M. J. Hammer. Water Supply and Pollution Control. 7th ed. Upper Saddle River, NJ: Pearson Education, Inc., 2005, p. 319.

NBOD can be determined stoichiometrically from net nitrification reaction =

$$
\mathrm{NH}_{4}^{+}+2 \mathrm{O}_{2} \quad \rightarrow \quad \mathrm{NO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O}
$$

1 gm NH 4 consumes 4.57 gm oxygen

NBOD can be suppressed by nitrification inhibitors added to BOD bottle at start of test

How do $B O D$ and COD relate?
COD is measured by chemical test - dichromate $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ (a strong oxidant) is added, reacted with organics, and leftover dichromate measured by titration
By subtraction, dichromate used to oxidize is computed and converted to equivalent O_{2}
COD and $B O D$ are fundamentally different =
COD is defined chemical quantity
BOD is a boassay
Not necessarily correlated
For untreated municipal wastewater

$$
\frac{B O D}{C O D} \approx \frac{2}{3} \text { is often assumed }
$$

For more information see: Rodger B. Baird and Roy-Keith smith, 2002. Third Century of Biochemical Oxygen Demand. Water Environment Federation, Alexandria, Virginia.

Typical BOD values	COD	CBOD		NBOD
	$(\mathrm{mg} / \mathrm{L})$	$(\mathrm{mg} / \mathrm{L})$	$(\mathrm{mg} / \mathrm{L})$	$\overline{\text { COD }}$
Municipal wastewater				
untreated	450	200	220	$0.3-0.8$
primary treatment	250	130		$0.4-0.6$
secondary treatment	50	30	40	$0.1-0.3$
combined sewer overflow	370	170	290	

Source: USEPA, 1997 Technical Guidance Manual for Developing Total Maximum Daily Loads, Book 2 = streams and Rivers, Part 1: Biochemical Oxygen Demand/Dissolved Oxygen and Nutrients/Eutrophication. Report No. EPA-823-B-97-002.

