Lecture 20 - Activated sludge treatment Air Secondary Clarifier > Effluent Influent. Aeration from tank primary treatment Return activated sludge wasted sludge contains mixed liquor - combination Aeration tank of influent wastewater and return (recycled) activated sludge Mixed liquor includes Mixed liquor suspended solids (MLSS) Volatile suspended solids - ignited at 500°C (MLVSS) generally taken to represent microorganisms in the wastewater MLVSS consists of - generally soil rather than Bacteria enteric bacteria both aerobes and facultative aerobes "Slime" usually in flocs composed of: extracellular polymeric substances ("slime") - polysaccarides, proteins, nucleic acids, lipids, etc.

live bacterial cells

cell debris (dead, lysed cells)

MLVSS contains (continued)

some free (possibly motile) cells

Protozoa (see page 3)

Stalked protozoa attached to flocs

Free-swimming protozoa

Protozoa predate on bacteria (contribute to Kd)

Nonbiodegradable organic matter

(e.g. coffee grounds, rice hulls)

MLSS also contains

Inert suspended solids or fixed suspended solids (FSS)
Non-organic solids (e.g. clay particles)

Typical breakdown of raw wastewater

Influent total suspended solids (TSS) - 220 mg/L
Influent VSS - 200 mg/L
Influent FSS - 20 mg/L

Non-biodegradable VSS - 90 mg/L

Typical values for aeration tank mixed liquor

MLSS - 2500 mg/L (1500 - 4000 mg/L) MLVSS - 2000 mg/L For an image of activated sludge, please see the Vessman and Hammer textbook, page 539.

Viessman, W., Jr., and M. J. Hammer. *Water Supply and Pollution Control*. 7th ed. Pearson Education, Inc., Upper Saddle River, NJ: Pearson Prentice Hall, 2005. ISBN: 0131409700.

MLSS is key component in AST

MLSS rapidly (20-45 minutes) adsorbs organic matter in wastewater influent

Bacteria then solubilize and oxidize organic matter

State of bacteria controls nature of floc

F/M ratio dictates character of bacteria and floc (Figure pg. 5)

At high F/M ratio:

There is excess food

Bacteria are growing fast, slime layer is thin

Bacteria have energy to swim to food

and food is plentiful -> favors

motile bacteria

Result is small floc ("pin floc")

that does not settle well

in secondary clarifier

Also, excess food carries into

effluent -> treatment

efficiency is poor

Eq 39 from Lecture 17; pg. 12

If $\frac{F}{M}$ goes up, E goes down,

all other variables being constant

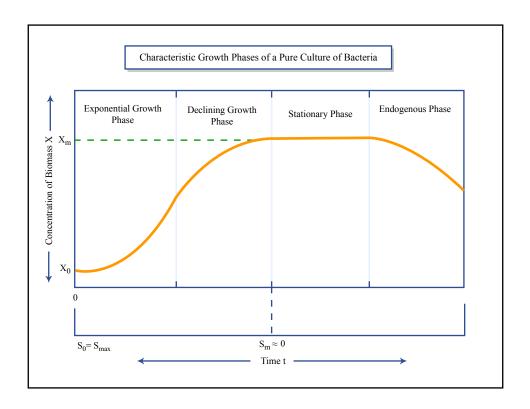


Figure by MIT OCW.

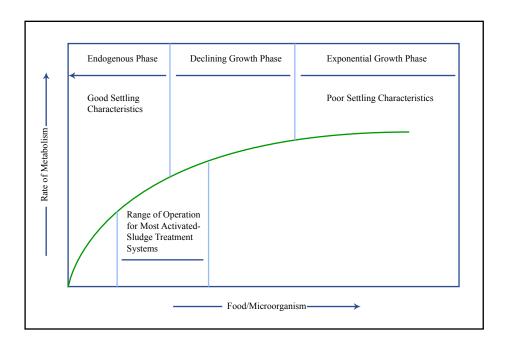


Figure by MIT OCW.

Adpated from: Viessman, W., Jr., and M. J. Hammer. *Water Supply and Pollution Control.* 7th ed. Upper Saddle River, NJ: Pearson Education, Inc., 2005, pp. 530, 534.

At LOW F/M ratio =

Cells are starved - undergoing endogenous respiration

Cells undergoing relatively high death (lysis), predation,

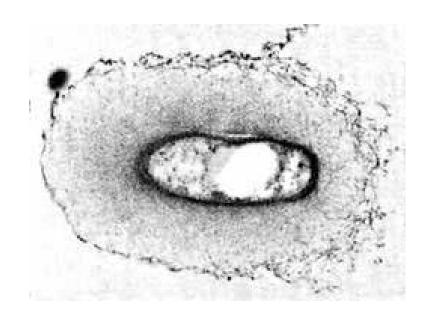
respiration (Ky increased) Nearly all substrate is consumed

(high treatment efficiency)
Cells are mostly attached to flocs

Result is good settling floc ->
good efficiency in secondary
clarifier

cell slime layers are thickest at start of endogenous growth phase - creates best conditions for flocculation

Slime layers shed by dying cells create a gelatinous "glue" that holds floc zo-eh-glee-ah together - call zoogloea "animal glue"


But, good aeration is needed for live cells to create polysaccharide gums that make up slime

Bottom figure on page 5 shows optimal zone for operating aeration basin: endogenous to declining growth phase, low F/M ratios


Generally favorable conditions:

SRT = 0c = 5 to 15 days

F/M = 0.2 to 0.4 kg BOD5/kg MLSS.day
0.3 to 0.6 kg COD/kg MLSS.day

Bacteria with slime layer

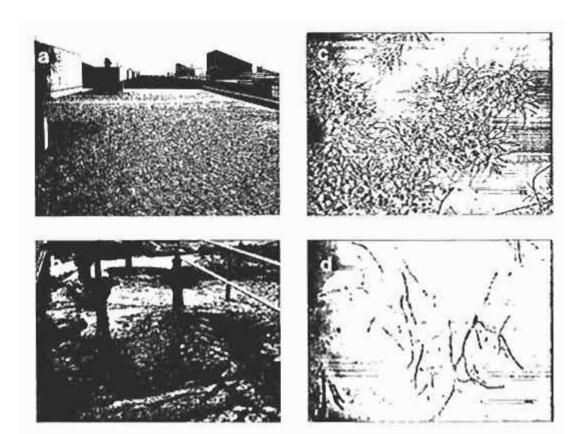
Activated sludge floc with slime

F/M ratio also affects bulking sludge

Growth of filamentous microorganisms cause bulking sludge

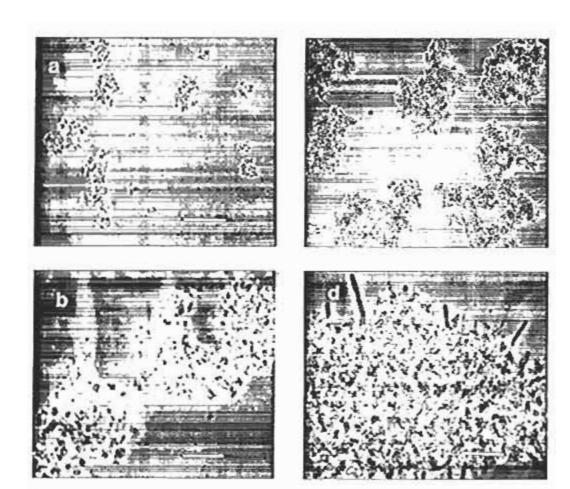
Bulking sludge settles poorly, accumulates in secondary clarifier, may even form foam that overtops clarifier side walls

Causes are not terribly well understood:


Reynolds and Richards (1996) say
high F/M ratio (> 0.8 kg BODS/kg MLSS.day)
encourage growth of Sphaerotilus and
cause bulking sludge

Droste (1997) and MtE say low FIM ratio, long sludge age, high temp. favor Nocardia growth and cause bulking sludge and foaming

activated sludge info says same conditions also favor Microthrix parvicella (pg 8) along with low temp, long-chain fatty acid substrates


Can also get non-filamentous bulking (a.k.a. viscous bulking, slime bulking) from excess production of bacterial slime - sometimes occur when nutrient conc. inadequate (www.activatedsludge. info/resources/visbulk.asp)

All of these considerations illustrate complexity of the activated sludge "ecosystem" and of AST treatment

Nocardia foaming in activated sludge: a. and b. foam on the aeration basin; c. and d. microscopic appearance of Nocardia foam (c. 400 x phase contrast; $bar = 25 \mu m$; d. 1000 x phase contrast; $bar = 10 \mu m$).

Courtesy of Environmental Protection Agency

Microscopic appearance of activated sludge flocs: a. small, weak flocs (pinfloc) (100 x phase contrast); b. small, weak flocs (100 x phase contrast); c. flocs containing microorganisms (100 x phase contrast); d. floc containing filamentous organisms "network" or "backbone" (1000 x phase contrast) (a and c bar = 100 μ m; b and d bar = 10 μ m).

Courtesy of Environmental Protection Agency

Oxygen required in aeration tank

Oxygen required (kg 02/day)

 $R_{00} = Q(S_{in} - S) - 1.42 P$

P is sludge production rate kg VSS/d

= Qexe + Qwxr per Lecture 17, Eq 23

1.42 is g COD/g biomass per Lecture 14, pg 9

1.42P is subtracted because it represents the portion of substrate that gets converted to biomass and then removed from system before it exerts its oxygen demand

Oxygen uptake rate is 02 required per unit volume of aeration tank:

$$OUR = \frac{R_{02}}{\forall} = \frac{S_{in}-S}{t_R} - \frac{1.42}{\forall}$$

This can be shown to equal (Haas, 1979):

OUR =
$$\frac{5_{10}-5}{t_R} - \frac{1.42}{t_R} \left(\frac{5_{10}-5}{1+k_d\theta_c}\right)$$

Typical volumetric our rates are 62 m³ air kg BODS (per M&E, 1979, pg. 477)

Reference: Haas, Charles N., 1979. Oxygen uptake rate as an activated sludge control parameter. Journal Water Pollution Control Federation, Vol. 51, No. 5, Pp. 938-943, July 1979.

Minimum required DO conc. is 0.2 to 2.0 mg/L	
(0.5 for conventional AST)	1
·	
Various mechanisms are used to transfer Oz into	
water	
Oz transfer efficiency = Oz mass dissolved in	water
Oz mass applied as q	jas
Pages 11-13 illustrate alternative transfer med	and the second s
·	transfer eff
Bill Fine bubble diffuser - total floor coverage -	20-32%
side wall installation -	11-15
B12 Jet aerators (fine bubble)	22-27
Static aerators	12-14
13 Mechanical surface aerators	2,5-3,5
Secondary clarifier	
Principles same as sédimentation tants (Lecti	ive 5 3 6)
Properties of sludge are special consideration	on
1-liter sample of sludge settled in 1-liter g	raduated
cylinder for 30 minutes:	
30 min	
30 min	
1 volume	≥ ¥c
5 ludge density index, SDI = TSS of settle	ed sludge
(mg/L) =	Xr
1/SDI = Sludge volume index, SVI	
(usually 50-150 ml/g)	

Low SVI -> good settling studge

Please point your browser to the following links for examples of fine bubble diffusers:

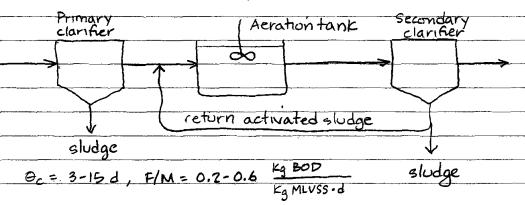
http://www.proequipment.com/aeration/disktype.htm

http://www.sequencertech.com/equipment/equipment_aeration/fine_bubble.htm

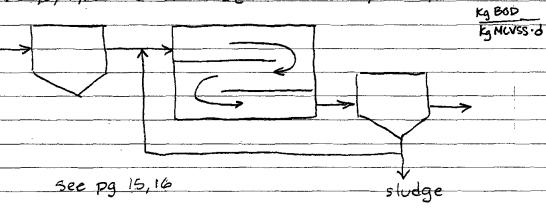
Please point your browser to the following links for examples of static aerators:

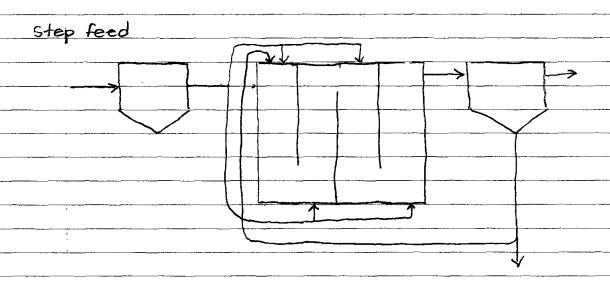
http://www.aquaculture.ugent.be//coursmat/autom/pic/stat.jpg

http://www.sequencertech.com/equipment/equipment_aeration/jet_aeration.htm


Please point your browser to the following links for examples of surface aerators:

http://www.en-found.com/sur.htm


http://perso.wanadoo.fr/isma/en_aerateur-de-surface-aerostar-documentation-photos.html


AST Designs - M&E lists 16 different variations

Complete mix (basis for equations in Lecture 17)

Conventional plug flow, high rate aeration $\theta_c = 3-15 \text{ days}$, F/M = 0.2-0.4 $\theta_c = 0.5-2 \text{ days}$ F/M = 1.5-2

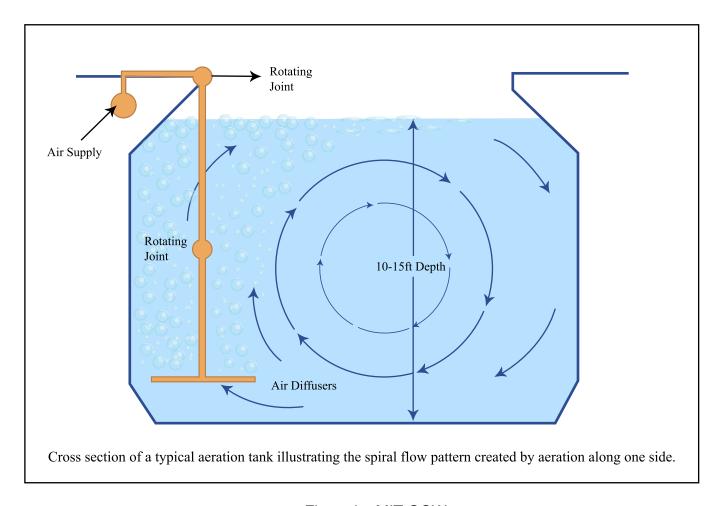


Figure by MIT OCW.

Adpated from: Viessman, W., Jr., and M. J. Hammer. *Water Supply and Pollution Control.* 7th ed. Upper Saddle River, NJ: Pearson Education, Inc., 2005, p. 580.

Please point your browser to the following link for an example of a Primary Aeration Tank:

http://www.college.ucla.edu/webproject/micro7/studentprojects7/Rader/asludge2.htm

Extended aeration AST - pg. 18

"Race-track" design For smaller communities

527 = 20 - 40 daysF/M = 0.04 - 0.1

High purity oxygen AST

Uses pure oxygen in covered aeration tanks
Allows reduced aeration period

SRT = 1-4 d, F/M = 0.5-1.0

Textbook has good discussion of design alternatives - pp 578-591

Summary of operating characteristics on pg. 19

Please see Figures 12-37 and 12-38 in the Viessman and Hammer textbook for images of activated sludge plants and different types of aerators.

Viessman, W., Jr., and M. J. Hammer. *Water Supply and Pollution Control*. 7th ed. Pearson Education, Inc., Upper Saddle River, NJ: Pearson Prentice Hall, 2005. ISBN: 0131409700.

Typical Design Parameters for Commonly Used Activated-Sludge Processes^a

Process Name	Type of Reactor	SRT, d	F/M kg BOD/kg MLVSS.d	Volumetri lb BOD / 1000 ft ³ .d	c Loading kg BOD / m ³ .d	MLSS, mg / L	Total τ, h	RAS, % of Influent ^e
High-rate Aeration	Plug Flow	0.5-2	1.5-2.0	75-150	1.2-2.4	200-1000	1.5-3	100-150
Contact Stabilization	Plug Flow	5-10	0.2-0.6	60-75	1.0-1.3	1000-3000 ^b 6000-10000 ^c	0.5-1 ^b 2-4 ^c	50-150
High-Purity Oxygen	Plug Flow	1-4	0.5-1.0	80-200	1.3-3.2	2000-5000	1-3	25-50
Conventional Plug Flow	Plug Flow	3-15	0.2-0.4	20-40	0.3-0.7	1000-3000	4-8	25-75 ^f
Step Feed	Plug Flow	3-15	0.2-0.4	40-60	7.0-1.0	1500-4000	3-5	25-75
Complete Mix	CMAS	3-15	0.2-0.6	20-100	0.3-1.6	1500-4000	3-5	25-100 ^f
Extended Aeration	Plug Flow	20-40	0.04-0.10	5-15	0.1-0.3	2000-5000	20-30	50-150
Oxidation Ditch	Plug Flow	15-30	0.04-0.10	5-15	0.1-0.3	3000-5000	15-30	75-150
Batch Decant	Batch	12-25	0.04-0.10	5-15	0.1-0.3	2000-5000d	20-40	NA
Sequencing Batch Reactor	Batch	10-30	0.04-0.10	5-15	0.1-0.3	2000-5000d	15-40	NA
Countercurrent Aeration System (CCAS TM)	Plug Flow	10-30	0.04-0.10	5-10	0.1-0.3	2000-4000	15-40	25-75 ^f

a = Adapted from WEF (1998); Crites & Tchobanoglous (1998).

Figure by MIT OCW.

Adapted from: G. Tchobanoglous, F. L. Burton, and H. D. Stensel. *Wastewater Engineering: Treatment and Reuse*. 4th ed. Metcalf & Eddy Inc., New York, NY: McGraw-Hill, 2003, p. 747.

b = MLSS & detention time in contact basin.

c = MLSS & detention time in stabilization basin.

d = Also used at intermediate SRTs.

e = Based on average flow.

f = For nitrification, rates may be increased by 25 to 50%.

NA = Not Applicable.

Use of Lecture 17 models in designing AST

- 1. Q, Sin are given
- 2. Regulations dictate S or E = 5 in S
- 3. Select desired Oc and X (MLVSS)
- 4. Bench-scale studies determine Y, Kd, Ks, Mmax, SVI
- 5. $\frac{1}{\theta_c} = \Upsilon \frac{F}{M} E K_d \longrightarrow \frac{F}{M}$ (Eq 39)
- 6. $\frac{F}{M} = \frac{S_{in}}{t_R X} \rightarrow t_R$ (Eq 37)
- 7. $t_R = \frac{\forall}{Q} \rightarrow \forall$
- $\delta, \qquad \chi_r = 1/S \vee I$
- 9: $\Theta_c = \frac{t_R}{1 + R R (x_r/x)} \rightarrow R$ (Eq. 33)
- 10. $R = Q_r/Q \rightarrow Q_r$
- 11. $P = \forall (Mg-k_d) \times \rightarrow P$ (Eq 23) sludge prod. rate
- 12. $P = Q_e X_c + Q_w X_r$ (Eq 23) $= (Q - Q_r) X_e + Q_w X_r \rightarrow X_e$
- 13. $R_{02} = Q(S_{1n}-S) 1.42P \rightarrow R_{02}$