1.89, Environmental Microbiology Prof. Martin Polz Lecture 10

Electron Accepters: Metals

Iron oxides
abundant in soils & sediments of terrestrial origin
Manganese oxides

 CH_3COO^- + 8Fe(III) + 4H₂O → 2HCO₃⁻ + 8Fe(II) + 9H⁺

- More limited C-substrates: NO SUGARS!
 - Acetate, lactate (simple organic acids) \rightarrow Frequently incomplete
 - o Simple alcoholso Simple hydrocarbons

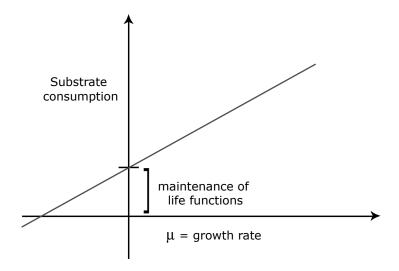
oxidations (acetate as end-product)

- o H₂
- Can use a great variety of metals & metalloids

 \rightarrow Cu, As, Mo, V, Cr, Se, Co

- Significance: metal solubility changes with oxidation state. Example: Fe-oxides are solids → sorbs many other chemicals → reduction can lead to solubilization (example: phosphate, arsenic)
- Sulphate
 - 2 types
 - 1. <u>Complete oxidizers</u> $CH_3COO^- + SO_4^{2-} + 3H^+ \rightarrow 2CO_2 + H_2S + H_2O$
 - 2. Incomplete oxidizers $2CH_3 - CHOH - COOH + SO_4^{2-} \rightarrow 2CH_3COOH + 2CO_2 + S^{2-} + 2H_2O$ (Lactate)
 - o Similar substrates to metal reducers
 - Significance is primarily marine (up to 80% of C-mineralization in anaerobic sediments by SRB (Sulfate Reducing Bacteria))
- Carbon dioxide
 - Methanogenesis (methanogens \Rightarrow all archaea)

2 types


- 1. $CO_2 \text{ only} \Rightarrow CO_2 + 3H_2 \rightarrow CH_4 + H_2O$
- 2. acetodastic methanogens $CH_3COO^- + H_2O \rightarrow CH_4 + HCO_3^-$
- Acetogenic bacteria $4H_2 + 2HCO_3^- + H^+ \rightarrow CH_3COO^- + 4H_2O$

Energetic considerations

- Yield (Y): how much biomass/specific substrate can be made
- Theoretically need 35 mmol ATP/g all biomass, so 1 mol ATP \rightarrow 30 g cells.

Experimental:

- o Streptococcus faecalis $Y_{glucose} = 22 \text{ g/mol} \rightarrow 2 \text{ ATP / glucose}$
- o Zymomonas mobilis $Y_{glucose}$ = 8.3 g/mol \rightarrow 1 ATP / glucos e
- ~ 10 g biomass/mol ATP

Aerobes: $5C:1N \rightarrow$ more into biomass, less into respiration Anaerobes: $5C:1N \rightarrow$ more of this goes into respiration because lower unclear yield of biomass

How is organic matter mineralized in aerobic vs. anaerobic environments?

Paradox: most organic C = polymers (proteins, DNA, structural polysaccharides)

- Yet anaerobic respirers can only use very simple C-substrates
- Why is H₂ usage so pervasive?

Aerobic bacteria

Specialized in respect to types of C-substrates used

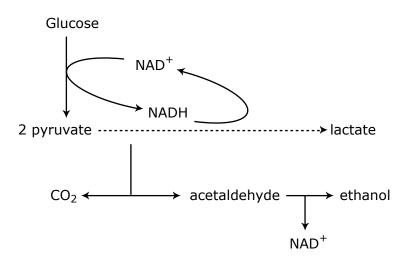
- Almost always mineralized to CO₂
- Some have wide substrate spectrum (generalists)
- Some have narrow substrate spectrum (specialists)

Alcohols

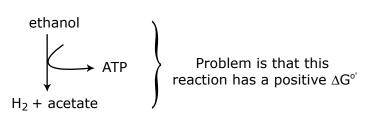
 H_2

Anaerobic bacteria

- Cooperation for mineralization
- Fermenters hydrolyze polymers & ferment monomers (example: sugars & amino acids)


 \rightarrow Excrete simple fatty acids

substrates for


anaerobic respirers

Relationship between fermenter and anaerobic respirers = Syntrophy

Reexamine fermentation

But additional energy could be gained from reaction:

Standard conditions

$$7 \Delta G^{\circ} = +19.4 \text{ KJ/mol}$$

 $2\text{CH}_3\text{CH}_2\text{OH} + 2\text{H}_2\text{O} \rightarrow 4\text{H}_2 + 2\text{CH}_3\text{COOH} + 2\text{H}^+$

 $\Delta G_{reaction}$ depends on H₂ partial pressure

 \rightarrow anaerobic respirers have a high affinity for H₂

- \Rightarrow Close cooperation results in a crucial role of acetate & hydrogen in anaerobic environments
- \Rightarrow Anaerobic food chain