1.89, Environmental Microbiology Prof. Martin Polz Lecture 12

Energetics: biomass yield ATP, NADH yield optimized

 $\Delta G^{o'}$ glucose $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$

→ -2,869 KJ/mol

 $\Delta G^{o'}$ benzene $C_6H_6 + \frac{15}{2}O_2 \rightarrow 6CO_2 + 3H_2O$

→ -3,265 KJ/mol

- Benzene <u>appears</u> to be more energetically favorable
- However, biomass formation using benzene is actually more <u>costly</u>
- Solubility of benzene is lower
- Benzene has longer half-life

Autotrophy

- $CO_2 = carbon source$
- ATP energy provided by light or oxidation of inorganic chemicals
- Oxidation of inorganic chemicals \rightarrow gets reducing power from NADPH

CO₂ - fixation

- Several pathways
 - a) Calvin Benson cycle: all plants, cyanobacteria & many other bacteria
 - Most important CO₂-fixation pathway
 - Runs ~ 6 times before fructose 6 phosphate can be used for biosynthesis
 - Key enzyme: RuBisCo (Ribulose 1, 6-bisphosphate Carboxylase/Oxygenase)
 - b) Reverse TCA cycle: green sulfur bacteria
 - c) Acetyl-CoA pathway: anaerobic respirers when growing with H_2 as energy source
 - d) Serine pathway: methanotrophs (oxidize methane)

Phototrophy

- 1st step: light is absorbed by photopigment
- Chlorophyll is most important pigment (chlorophyll is excited by light & donates e^{-s}, leading to generation of proton motive force)
 - Chlorophyll a, plants, algae, cyanobacteria (all of these absorb between 450-700 nm)
 - $\circ~$ Other chlorophyll has different absorption ranges \rightarrow plays a role in ecological differentiation

Accessory pigments

- Example: carotenoids
- Also capture light \rightarrow energy transfer to chlorophylls

2 types of photosynthesis

- 2 photosystems (PS): PSI (analogous to anoxygenic PS) & PSII
 - (replenishes e^{-} lost by PSI and uses H₂O as e^{-} donor (O₂ generated as result))
 - ATP generation occurs via cyclical e⁻ flow in PSI
 - NADPH generation occurs via "z-scheme" where PSII acts as an edonor for PSI (which is oxidized by NADP⁺ reduction)
- e⁻ in PSII replenished by $H_2O \rightarrow \frac{1}{2}O_2 + 2H^+$ •

Lithotrophy

- Diverse group of bacteria which gain energy by oxidation of inorganic • <u>chemicals</u> with molecular O_2 (or NO_3^-)
- Hydrogen oxidizers: $H_2 + \frac{1}{2}O_2 \rightarrow H_2O_2$ •
- Nitrifiers:
- 2 types:
 - 1. Ammonia oxidizers \rightarrow nitrite

2. Nitrite oxidizers \rightarrow nitrate

(1 Biosynthesis: both processes are not very efficient, must use a lot of N substrate to get 1 mol C₅H₇O₂N

Reducing power

comes from H₂O

$$\begin{cases} 1. \quad 55\text{NH}_{4}^{+} + 76\text{O}_{2}^{-} + 109\text{HCO}_{3}^{-} \rightarrow \text{C}_{5}\text{H}_{7}\text{O}_{2}\text{N} + 54\text{NO}_{2}^{-} + 57\text{H}_{2}\text{O} + 104\text{H}_{2}\text{CO}_{3} \\ \\ 2. \quad 400\text{NO}_{2}^{-} + \underbrace{\text{NH}_{4}^{+}}_{\text{biomass}} + 4\text{H}_{2}\text{CO}_{3}^{-} + \text{HCO}_{3}^{-} + 195\text{O}_{2}^{-} \rightarrow \text{C}_{5}\text{H}_{7}\text{O}_{2}\text{N} + 3\text{H}_{2}\text{O} + 400\text{NO}_{3}^{-} \\ \\ \underbrace{\text{biomass}}_{\text{biomass}} \text{nergy:} \\ \\ . \quad \text{NH}_{4}^{+} + 3/2\text{O}_{2}^{-} \rightarrow \text{NO}_{2}^{-} + 2\text{H}^{+} + \text{H}_{2}\text{O} \end{cases}$$

E

1.
$$NH_4^+ + 3/2O_2 \rightarrow NO_2^- + 2H^+ + H_2$$

2.
$$NO_2^- + 1/2O_2^- \rightarrow NO_3^-$$

Note: denitrifiers use NO_3^{-} as electron acceptors & reduce it to N_2 gas.

e⁻ acceptor

• Anamox: $5NH_4^+ + 3NO_3^- \rightarrow 4N_2^- + 9H_2O^- + 2H^+$

wastewater treatment? – need exact stoichiomethry (no O_2 , add NO_3^-)

Chemolithoautotrophs: All need reduced chemicals & oxygen or nitrate as $e^{\text{-}}$ acceptors.